您选择的条件: Meng Jin
  • Tensor Gaussian Process with Contraction for Multi-Channel Imaging Analysis

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Multi-channel imaging data is a prevalent data format in scientific fields such as astronomy and biology. The structured information and the high dimensionality of these 3-D tensor data makes the analysis an intriguing but challenging topic for statisticians and practitioners. The low-rank scalar-on-tensor regression model, in particular, has received widespread attention and has been re-formulated as a tensor Gaussian Process (Tensor-GP) model with multi-linear kernel in Yu et al. (2018). In this paper, we extend the Tensor-GP model by integrating a dimensionality reduction technique, called tensor contraction, with a Tensor-GP for a scalar-on-tensor regression task with multi-channel imaging data. This is motivated by the solar flare forecasting problem with high dimensional multi-channel imaging data. We first estimate a latent, reduced-size tensor for each data tensor and then apply a multi-linear Tensor-GP on the latent tensor data for prediction. We introduce an anisotropic total-variation regularization when conducting the tensor contraction to obtain a sparse and smooth latent tensor. We then propose an alternating proximal gradient descent algorithm for estimation. We validate our approach via extensive simulation studies and applying it to the solar flare forecasting problem.

  • Tensor Gaussian Process with Contraction for Multi-Channel Imaging Analysis

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Multi-channel imaging data is a prevalent data format in scientific fields such as astronomy and biology. The structured information and the high dimensionality of these 3-D tensor data makes the analysis an intriguing but challenging topic for statisticians and practitioners. The low-rank scalar-on-tensor regression model, in particular, has received widespread attention and has been re-formulated as a tensor Gaussian Process (Tensor-GP) model with multi-linear kernel in Yu et al. (2018). In this paper, we extend the Tensor-GP model by integrating a dimensionality reduction technique, called tensor contraction, with a Tensor-GP for a scalar-on-tensor regression task with multi-channel imaging data. This is motivated by the solar flare forecasting problem with high dimensional multi-channel imaging data. We first estimate a latent, reduced-size tensor for each data tensor and then apply a multi-linear Tensor-GP on the latent tensor data for prediction. We introduce an anisotropic total-variation regularization when conducting the tensor contraction to obtain a sparse and smooth latent tensor. We then propose an alternating proximal gradient descent algorithm for estimation. We validate our approach via extensive simulation studies and applying it to the solar flare forecasting problem.

  • Forward Modeling of Magnetic-field Measurements at the Bases of Stellar Coronae through Extreme-Ultraviolet Spectroscopy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Measurements of the stellar coronal magnetic field are of great importance in understanding the stellar magnetic activity, yet the measurements have been extremely difficult. Recent studies proposed a new method of magnetic field measurements based on the magnetic-field-induced-transition (MIT) of the Fe~{\sc{x}} ion. Here we construct a series of stellar coronal magnetohydrodynamics (MHD) models and synthesize several Fe~{\sc{x}} emission lines at extreme-ultraviolet wavelengths, and then diagnose the magnetic field strength at the bases of the coronae using the MIT technique. Our results show that the technique can be applied to some stars with magnetic fields more than three times higher than that of the Sun at solar maximum. Furthermore, we investigate the uncertainty of the derived magnetic field strength caused by photon counting error and find that a signal-noise ratio of $\sim$50 for the Fe~{\sc{x}} 175 {\AA}~line is required to achieve effective measurements of the stellar coronal magnetic field.

  • Assessing the Influence of Input Magnetic Maps on Global Modeling of the Solar Wind and CME-driven Shock in the 2013 April 11 Event

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In the past decade, significant efforts have been made in developing physics-based solar wind and coronal mass ejection (CME) models, which have been or are being transferred to national centers (e.g., SWPC, CCMC) to enable space weather predictive capability. However, the input data coverage for space weather forecasting is extremely limited. One major limitation is the solar magnetic field measurements, which are used to specify the inner boundary conditions of the global magnetohydrodynamic (MHD) models. In this study, using the Alfven wave solar model (AWSoM), we quantitatively assess the influence of the magnetic field map input (synoptic/diachronic vs. synchronic magnetic maps) on the global modeling of the solar wind and the CME-driven shock in the 2013 April 11 solar energetic particle (SEP) event. Our study shows that due to the inhomogeneous background solar wind and dynamical evolution of the CME, the CME-driven shock parameters change significantly both spatially and temporally as the CME propagates through the heliosphere. The input magnetic map has a great impact on the shock connectivity and shock properties in the global MHD simulation. Therefore this study illustrates the importance of taking into account the model uncertainty due to the imperfect magnetic field measurements when using the model to provide space weather predictions.

  • Coronal Mass Ejections and Dimmings: A Comparative Study using MHD Simulations and SDO Observations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Solar coronal dimmings have been observed extensively in the past two decades. Due to their close association with coronal mass ejections (CMEs), there is a critical need to improve our understanding of the physical processes that cause dimmings as well as their relationship with CMEs. In this study, we investigate coronal dimmings by combining simulation and observational efforts. By utilizing a data-constrained global magnetohydrodynamics model (AWSoM: Alfven-wave Solar Model), we simulate coronal dimmings resulting from different CME energetics and flux rope configurations. We synthesize the emissions of different EUV spectral bands/lines and compare with SDO/AIA and EVE observations. A detailed analysis of the simulation and observation data suggests that the transient dimming / brightening are related to plasma heating processes, while the long-lasting core and remote dimmings are caused by mass loss process induced by the CME. Moreover, the interaction between the erupting flux rope with different orientations and the global solar corona could significantly influence the coronal dimming patterns. Using metrics such as dimming depth and dimming slope, we investigate the relationship between dimmings and CME properties (e.g., CME mass, CME speed) in the simulation. Our result suggests that coronal dimmings encode important information about the associated CMEs, which provides a physical basis for detecting stellar CMEs from distant solar-like stars.

  • Forward Modeling of Magnetic-field Measurements at the Bases of Stellar Coronae through Extreme-Ultraviolet Spectroscopy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Measurements of the stellar coronal magnetic field are of great importance in understanding the stellar magnetic activity, yet the measurements have been extremely difficult. Recent studies proposed a new method of magnetic field measurements based on the magnetic-field-induced-transition (MIT) of the Fe~{\sc{x}} ion. Here we construct a series of stellar coronal magnetohydrodynamics (MHD) models and synthesize several Fe~{\sc{x}} emission lines at extreme-ultraviolet wavelengths, and then diagnose the magnetic field strength at the bases of the coronae using the MIT technique. Our results show that the technique can be applied to some stars with magnetic fields more than three times higher than that of the Sun at solar maximum. Furthermore, we investigate the uncertainty of the derived magnetic field strength caused by photon counting error and find that a signal-noise ratio of $\sim$50 for the Fe~{\sc{x}} 175 {\AA}~line is required to achieve effective measurements of the stellar coronal magnetic field.

  • Measurements of the magnetic field strengths at the bases of stellar coronae using the magnetic-field-induced transition theory

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Measurements of the magnetic field in the stellar coronae are extremely difficult. Recently, it was proposed that the magnetic-field-induced transition (MIT) of the Fe X 257 {\AA} line can be used to measure the coronal magnetic field of the Sun. We performed forward modeling with a series of global stellar magnetohydrodynamics models to investigate the possibility of extending this method to other late-type stars. We first synthesized the emissions of several Fe X lines for each stellar model, then calculated the magnetic field strengths using the intensity ratios of Fe X 257 {\AA} to several other Fe X lines based on the MIT theory. Finally, we compared the derived field strengths with those in the models, and concluded that this method can be used to measure at least the magnetic field strengths at the coronal bases of stars with a mean surface magnetic flux density about one order of magnitude higher than that of the Sun. Our investigation suggests the need of an extreme ultraviolet spectrometer to perform routine measurements of the stellar coronal magnetic field.