按提交时间
按主题分类
按作者
按机构
您选择的条件: Cheng Chen
  • Orbital stability of two circumbinary planets around misaligned eccentric binaries

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With $n$-body simulations we investigate the stability of tilted circumbinary planetary systems consisting of two nonzero mass planets. The planets are initially in circular orbits that are coplanar to each other, as would be expected if they form in a flat but tilted circumbinary gas disc and decouple from the disc within a time difference that is much less than the disc nodal precession period. We constrain the parameters of stable multiple planet circumbinary systems. Both planet-planet and planet-binary interactions can cause complex planet tilt oscillations which can destabilise the orbits of one or both planets. The system is considerably more unstable than the effects of these individual interactions would suggest, due to the interplay between these two interactions. The stability of the system is sensitive to the binary eccentricity, the orbital tilt and the semi-major axes of the two circumbinary planets. With an inner planet semi-major axis of $5\,a_{\rm b}$, where $a_{\rm b}$ is semi-major axis of the binary, the system is generally stable if the outer planet is located at $\gtrsim 8\,a_{\rm b}$, beyond the 2:1 mean motion resonance with the inner planet. For larger inner planet semi-major axis the system is less stable because the von-Zeipel--Kozai--Lidov mechanism plays a significant role, particularly for low binary-eccentricity cases. For the unstable cases, the most likely outcome is that one planet is ejected and the other remains bound on a highly eccentric orbit. Therefore we suggest that this instability is an efficient mechanism for producing free-floating planets.

  • Polar alignment of a massive retrograde circumbinary disc around an eccentric binary

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: A test particle orbit around an eccentric binary has two stationary states in which there is no nodal precession: coplanar and polar. Nodal precession of a misaligned test particle orbit centres on one of these stationary states. A low mass circumbinary disc undergoes the same precession and moves towards one of these states through dissipation within the disc. For a massive particle orbit, the stationary polar alignment occurs at an inclination less than $90^{\circ}$, this is the prograde-polar stationary inclination. A sufficiently high angular momentum particle has an additional higher inclination stationary state, the retrograde-polar stationary inclination. Misaligned particle orbits close to the retrograde-polar stationary inclination are not nested like the orbits close to the other stationary points. We investigate the evolution of a gas disc that begins close to the retrograde-polar stationary inclination. With hydrodynamical disc simulations, we find that the disc moves through the unnested crescent shape precession orbits and eventually moves towards the prograde-polar stationary inclination thus increasing the parameter space over which circumbinary discs move towards polar alignment. If protoplanetary discs form with an isotropic orientation relative to the binary orbit, then polar discs may be more common than coplanar discs around eccentric binaries, even for massive discs. This has implications for the alignment of circumbinary planets.

  • ET White Paper: To Find the First Earth 2.0

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose to develop a wide-field and ultra-high-precision photometric survey mission, temporarily named "Earth 2.0 (ET)". This mission is designed to measure, for the first time, the occurrence rate and the orbital distributions of Earth-sized planets. ET consists of seven 30cm telescopes, to be launched to the Earth-Sun's L2 point. Six of these are transit telescopes with a field of view of 500 square degrees. Staring in the direction that encompasses the original Kepler field for four continuous years, this monitoring will return tens of thousands of transiting planets, including the elusive Earth twins orbiting solar-type stars. The seventh telescope is a 30cm microlensing telescope that will monitor an area of 4 square degrees toward the galactic bulge. This, combined with simultaneous ground-based KMTNet observations, will measure masses for hundreds of long-period and free-floating planets. Together, the transit and the microlensing telescopes will revolutionize our understandings of terrestrial planets across a large swath of orbital distances and free space. In addition, the survey data will also facilitate studies in the fields of asteroseismology, Galactic archeology, time-domain sciences, and black holes in binaries.

  • Two-Color Optical Nonlinearity in an Ultracold Rydberg Atom Gas Mixture

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report the experimental observation of strong two-color optical nonlinearity in an ultracold gas of $^{85}\mathrm{Rb}$-$^{87}\mathrm{Rb}$ atom mixture. By simultaneously coupling two probe transitions of $^{85}$Rb and $^{87}$Rb atoms to Rydberg states in electromagnetically induced transparency (EIT) configurations, we observe significant suppression of the transparency resonance for one probe field when the second probe field is detuned at $\sim1~\mathrm{GHz}$ and hitting the EIT resonance of the other isotope. Such a cross-absorption modulation to the beam propagation dynamics can be described by two coupled nonlinear wave equations we develope. We further demonstrate that the two-color optical nonlinearity can be tuned by varying the density ratio of different atomic isotopes, which highlights its potential for exploring strongly interacting multi-component fluids of light.