您选择的条件: Xiao Lin
  • Free-electron radiation engineering via structured environments

    分类: 光学 >> 量子光学 提交时间: 2023-02-20

    摘要: Free-electron radiation results from the interaction between swift electrons and the local electromagnetic environment. Recent advances in material technologies provide powerful tools to control light emission from free electrons and may facilitate many intriguing applications of free-electron radiation in particle detections, lasers, quantum information processing, etc. Here, we provide a brief overview on the recent theoretical developments and experimental observations of spontaneous free-electron radiation in various structured environments, including two-dimensional materials, metasurfaces, metamaterials, and photonic crystals. We also report on research progresses on the stimulated free-electron radiation that results from the interaction between free electrons and photonic quasi-particles induced by the external field. Moreover, we provide an outlook of potential research directions for this vigorous realm of free-electron radiation.

  • Emerging chiral optics from chiral interfaces

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Twisted atomic bilayers are emerging platforms for manipulating chiral light-matter interaction at the extreme nanoscale, due to their inherent magnetoelectric responses induced by the finite twist angle and quantum interlayer coupling between the atomic layers. Recent studies have reported the direct correspondence between twisted atomic bilayers and chiral metasurfaces, which features a chiral surface conductivity, in addition to the electric and magnetic surface conductivities. However, far-field chiral optics in light of these consitututive conductivities remains unexplored. Within the framework of the full Maxwell equations, we find that the chiral surface conductivity can be exploited to realize perfect polarization transformation between linearly polarized light. Remarkably, such an exotic chiral phenomenon can occur either for the reflected or transmitted light.

  • A Brewster route to Cherenkov detectors

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The Cherenkov effect enables a valuable tool, known as the Cherenkov detector, to identify high-energy particles via the measurement of the Cherenkov cone. However, the sensitivity and momentum coverage of such detectors are intrinsically limited by the refractive index of the host material. Especially, identifying particles with energy above multiple gigaelectronvolts requires host materials with a near-unity refractive index, which are often limited to large and bulky gas chambers. Overcoming this fundamental material limit is important for future particle detectors yet remains a long-standing scientific challenge. Here, we propose a different paradigm for Cherenkov detectors that utilizes the broadband angular filter made from stacks of variable one-dimensional photonic crystals. Owing to the Brewster effect, the angular filter is transparent only to Cherenkov photons from a precise incident angle, and particle identification is achieved by mapping each Cherenkov angle to the peak-intensity position of transmitted photons in the detection plane. This unique property of the angular filter is exceptionally beneficial to Cherenkov detection as it enables the realization of a non-dispersive pseudo refractive index over the entire visible spectrum. Moreover, such a pseudo refractive index can be flexibly tuned to arbitrary values, including those close to unity. Our angular-selective Brewster paradigm offers a feasible solution to implement compact and highly sensitive Cherenkov detectors especially in beam lines and it can cover a wide momentum range using readily available dielectric materials.

  • Free-electron Brewster radiation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Free-electron radiation offers an enticing route to create light emission at arbitrary spectral regime. However, this type of light emission is generally weak, which is intrinsically limited by the weak particle-matter interaction and unavoidably impedes the development of many promising applications, such as the miniaturization of free-electron radiation sources and high-energy particle detectors. Here we reveal a mechanism to enhance the particle-matter interaction by exploiting the pseudo-Brewster effect of gain materials - presenting an enhancement of at least four orders of magnitude for the light emission. This mechanism is enabled by the emergence of an unprecedented phase diagram that maps all phenomena of free-electron radiation into three distinct phases in a gain-thickness parameter space, namely the conventional, intermediate, and Brewster phases, when an electron penetrates a dielectric slab with a modest gain and a finite thickness. Essentially, our revealed mechanism corresponds to the free-electron radiation in the Brewster phase, which also uniquely features ultrahigh directionality, always at the Brewster angle, regardless of the electron velocity. Counterintuitively, we find that the intensity of this free-electron Brewster radiation is insensitive to the Fabry-Perot resonance condition and thus the variation of slab thickness, and moreover, a weaker gain could lead to a stronger enhancement for the light emission. The scheme of free-electron Brewster radiation, especially along with its compatibility with low-energy electrons, may enable the development of high-directionality high-intensity light sources at any frequency.

  • Low-velocity-favored transition radiation

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: When a charged particle penetrates through an optical interface, photon emissions emerge - a phenomenon known as transition radiation. Being paramount to fundamental physics, transition radiation has enabled many applications from high-energy particle identification to novel light sources. A rule of thumb in transition radiation is that the radiation intensity generally decreases with the particle velocity v; as a result, low-energy particles are not favored in practice. Here we find that there exist situations where transition radiation from particles with extremely low velocities (e.g. v/c<0.001) exhibits comparable intensity as that from high-energy particles (e.g. v/c=0.999), where c is light speed in free space. The comparable radiation intensity implies an extremely high photon extraction efficiency from low-energy particles, up to eight orders of magnitude larger than that from high-energy particles. This exotic phenomenon of low-velocity-favored transition radiation originates from the excitation of Ferrell-Berreman modes in epsilon-near-zero materials. Our findings may provide a promising route towards the design of integrated light sources based on low-energy electrons and specialized detectors for beyond-standard-model particles.

  • A perspective of twisted photonic structures

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Moire superlattices-twisted van der Waals (vdW) structures with small angles-are attracting increasing attention in condensed matter physics, due to important phenomena revealed therein, including unconventional superconductivity, correlated insulating states, and ferromagnetism. Moire superlattices are typically comprised of atomic layers of vdW materials where the exotic physics arises from the quantum electronic coupling between adjacent atomic layers. Recently, moire electronics has motivated their photonic counterparts. In addition to vdW materials, twisted photonic systems can also be comprised of metamaterials, metasurfaces, and photonic crystals, mediated by interlayer electromagnetic coupling instead. The interplay between short-ranged interlayer quantum and long-ranged electromagnetic coupling in twisted structures are expected to yield rich phenomena in nano-optics. This perspective reviews recent progress in twisted structures for nanophotonics and outlooks emerging topics, opportunities, fundamental challenges, and potential applications.

  • Observation of Weyl point pair annihilation in a gyromagnetic photonic crystal

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Weyl semimetals are gapless three-dimensional (3D) phases whose bandstructures contain Weyl point (WP) degeneracies. WPs carry topological charge and can only be eliminated by mutual annihilation, a process that generates the various topologically distinct 3D insulators. Time reversal (T) symmetric Weyl phases, containing a minimum of four WPs, have been extensively studied in real materials, photonic metamaterials, and other systems. Weyl phases with a single WP pair - the simplest configuration of WPs - are more elusive as they require T-breaking. Here, we implement a microwave-scale gyromagnetic 3D photonic crystal, and use field-mapping experiments to track a single pair of ideal WPs whose momentum space locations depend strongly on the biasing magnetic field. By continuously varying the field strength, we observe the annihilation of the WPs, and the formation of a 3D Chern insulator, a previously unrealised member of the family of 3D topological insulators (TIs). Surface measurements show, in unprecedented detail, how the Fermi arc states connecting the WPs evolve into TI surface states.

  • Anomalous free-electron radiation beyond the conventional formation time

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Free-electron radiation is a fundamental photon emission process that is induced by fast-moving electrons interacting with optical media. Historically, it has been understood that, just like any other photon emission process, free-electron radiation must be constrained within a finite time interval known as the "formation time", whose concept is applicable to both Cherenkov radiation and transition radiation, the two basic mechanisms describing radiation from a bulk medium and from an interface, respectively. Here we reveal an alternative mechanism of free-electron radiation far beyond the previously defined formation time. It occurs when a fast electron crosses the interface between vacuum and a plasmonic medium supporting bulk plasmons. While emitted continuously from the crossing point on the interface - thus consistent with the features of transition radiation - the anomalous radiation beyond the conventional formation time is supported by a long tail of bulk plasmons following the electron's trajectory deep into the plasmonic medium. Such a plasmonic tail mixes surface and bulk effects, and provides a sustained channel for electron-interface interaction. These results also settle the historical debate in Ferrell radiation, regarding whether it is a surface or bulk effect, from transition radiation or plasmonic oscillation.

  • Wide-angle giant photonic spin Hall effect

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Photonic spin Hall effect is a manifestation of spin-orbit interaction of light and can be measured by a transverse shift \lambda of photons with opposite spins. The precise measurement of transverse shifts can enable many spin-related applications, such as precise metrology and optical sensing. However, this transverse shift is generally small (i.e. \delta /\lambda {10}^{2}) have severe limitations, particularly its occurrence only over a narrow angular cone (with a width of \Delta \theta {70}^{\circ} by exploiting the interface between free space and uniaxial epsilon-near-zero media. The underlying mechanism is ascribed to the almost-perfect polarization splitting between s and p polarized waves at the designed interface. Remarkably, this almost-perfect polarization splitting does not resort to the interference effect and is insensitive to the incident angle, which then gives rise to the wide-angle giant photonic spin Hall effect.

  • Dipole-matter interactions governed by the asymmetry of Maxwell equations

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Directionally molding the near-field and far-field radiation lies at the heart of nanophotonics and is crucial for applications such as on-chip information processing and chiral quantum networks. The most fundamental model for radiating structures is a dipolar source located inside a homogeneous matter. However, the influence of matter on the directionality of dipolar radiation is oftentimes overlooked, especially for the near-field radiation. We show that the dipole-matter interaction is intrinsically asymmetric and does not fulfill the duality principle, originating from the inherent asymmetry of Maxwell equations, i.e., electric charge and current are ubiquitous but their magnetic counterparts are non-existent to elusive. Moreover, we find that the asymmetric dipole-matter interaction could offer an enticing route to reshape the directionality of not only the near-field radiation but also the far-field radiation. As an example, both the near-field and far-field radiation directionality of Huygens dipole (located close to a dielectric-metal interface) would be reversed, if the dipolar position is changed from the dielectric region to the metal region.

  • A perspective on meta-boundaries

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The judicious design of electromagnetic boundary provides a crucial route to control light-matter interactions, and it is thus fundamental to basic science and practical applications. General design approaches rely on the manipulation of bulk properties of superstrate or substrate and on the modification of boundary geometries. Due to the recent advent of metasurfaces and low-dimensional materials, the boundary can be flexibly featured with a surface conductivity, which can be rather complex but provide an extra degree of freedom to regulate the propagation of light. In this perspective, we denote the boundary with a non-zero surface conductivity as the meta-boundary. The meta-boundaries are categorized into four types, namely isotropic, anisotropic, biisotropic and bianisotropic meta-boundaries, according to the electromagnetic boundary conditions. Accordingly, the latest development for these four kinds of meta-boundaries are reviewed. Finally, an outlook on the research tendency of meta-boundaries is provided, particularly on the manipulation of light-matter interactions by simultaneously exploiting meta-boundaries and metamaterials.

  • Recent advances of transition radiation: fundamentals and applications

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Transition radiation is a fundamental process of light emission and occurs whenever a charged particle moves across an inhomogeneous region. One feature of transition radiation is that it can create light emission at arbitrary frequency under any particle velocity. Therefore, transition radiation is of significant importance to both fundamental science and practical applications. In this paper, we provide a brief historical review of transition radiation and its recent development. Moreover, we pay special attention to four typical applications of transition radiation, namely the detection of high-energy particles, coherent radiation sources, beam diagnosis, and excitation of surface waves. Finally, we give an outlook for the research tendency of transition radiation, especially its flexible manipulation by exploiting artificially-engineered materials and nanostructures, such as gain materials, metamaterials, spatial-temporal materials, meta-boundaries, and layered structures with a periodic or non-periodic stacking.