您选择的条件: Zeyang Sun
  • An unbiased method of measuring the ratio of two data sets

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In certain cases of astronomical data analysis, the meaningful physical quantity to extract is the ratio $R$ between two data sets. Examples include the lensing ratio, the interloper rate in spectroscopic redshift samples, the decay rate of gravitational potential and $E_G$ to test gravity. However, simply taking the ratio of the two data sets is biased, since it renders (even statistical) errors in the denominator into systematic errors in $R$. Furthermore, it is not optimal in minimizing statistical errors of $R$. Based on the Bayesian analysis and the usual assumption of Gaussian error in the data, we derive an analytical expression of the posterior PDF $P(R)$. This result enables fast and unbiased $R$ measurement, with minimal statistical errors. Furthermore, it relies on no underlying model other than the proportionality relation between the two data sets. Even more generally, it applies to the cases where the proportionality relation holds for the underlying physics/statistics instead of the two data sets directly. It also applies to the case of multiple ratios ($R\rightarrow {\bf R}=(R_1,R_2,\cdots)$). We take the lensing ratio as an example to demonstrate our method. We take lenses as DESI imaging survey galaxies, and sources as DECaLS cosmic shear and \emph{Planck} CMB lensing. We restrict the analysis to the ratio between CMB lensing and cosmic shear. The resulting $P(R$), for multiple lens-shear pairs, are all nearly Gaussian. The S/N of measured $R$ ranges from $5.3$ to $8.4$. We perform several tests to verify the robustness of the above result.

  • Cross-correlation of Planck CMB lensing with DESI galaxy groups

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We measure the cross-correlation between galaxy groups constructed from DESI Legacy Imaging Survey DR8 and \emph{Planck} CMB lensing, over overlapping sky area of 16876 $\rm deg^2$. The detections are significant and consistent with the expected signal of the large-scale structure of the universe, over group samples of various redshift, mass, richness $N_{\rm g}$ and over various scale cuts. The overall S/N is 40 for a conservative sample with $N_{\rm g}\geq 5$, and increases to $50$ for the sample with $N_{\rm g}\geq 2$. Adopting the \emph{Planck} 2018 cosmology, we constrain the density bias of groups with $N_{\rm g}\geq 5$ as $b_{\rm g}=1.31\pm 0.10$, $2.22\pm 0.10$, $3.52\pm 0.20$ at $0.1展开 -->

  • Using angular two-point correlations to self-calibrate the photometric redshift distributions of DECaLS DR9

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Calibrating the redshift distributions of photometric galaxy samples is essential in weak lensing studies. The self-calibration method combines angular auto- and cross-correlations between galaxies in multiple photometric redshift (photo-$z$) bins to reconstruct the scattering rates matrix between redshift bins. In this paper, we test a recently proposed self-calibration algorithm using the DECaLS Data Release 9 and investigate to what extent the scattering rates are determined. We first mitigate the spurious angular correlations due to imaging systematics by a machine learning based method. We then improve the algorithm for $\chi^2$ minimization and error estimation. Finally, we solve for the scattering matrices, carry out a series of consistency tests and find reasonable agreements: (1) finer photo-$z$ bins return a high-resolution scattering matrix, and it is broadly consistent with the low-resolution matrix from wider bins; (2) the scattering matrix from the Northern Galactic Cap is almost identical to that from Southern Galactic Cap; (3) the scattering matrices are in reasonable agreement with those constructed from the power spectrum and the weighted spectroscopic subsample. We also evaluate the impact of cosmic magnification. Although it changes little the diagonal elements of the scattering matrix, it affects the off-diagonals significantly. The scattering matrix also shows some dependence on scale cut of input correlations, which may be related to a known numerical degeneracy between certain scattering pairs. This work demonstrates the feasibility of the self-calibration method in real data and provides a practical alternative to calibrate the redshift distributions of photometric samples.

  • Detection of cross-correlation between CMB Lensing and low-density points

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Low Density Points (LDPs, \citet{2019ApJ...874....7D}), obtained by removing high-density regions of observed galaxies, can trace the Large-Scale Structures (LSSs) of the universe. In particular, it offers an intriguing opportunity to detect weak gravitational lensing from low-density regions. In this work, we investigate tomographic cross-correlation between Planck CMB lensing maps and LDP-traced LSSs, where LDPs are constructed from the DR8 data release of the DESI legacy imaging survey, with about $10^6$-$10^7$ galaxies. We find that, due to the large sky coverage (20,000 deg$^2$) and large redshift depth ($z\leq 1.2$), a significant detection ($10\sigma$--$30\sigma$) of the CMB lensing-LDP cross-correlation in all six redshift bins can be achieved, with a total significance of $\sim 53\sigma$ over $ \ell\le1024$. Moreover, the measurements are in good agreement with a theoretical template constructed from our numerical simulation in the WMAP 9-year $\Lambda$CDM cosmology. A scaling factor for the lensing amplitude $A_{\rm lens}$ is constrained to $A_{\rm lens}=1\pm0.12$ for $z<0.2$, $A_{\rm lens}=1.07\pm0.07$ for $0.2展开 -->

  • An unbiased method of measuring the ratio of two data sets

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: In certain cases of astronomical data analysis, the meaningful physical quantity to extract is the ratio $R$ between two data sets. Examples include the lensing ratio, the interloper rate in spectroscopic redshift samples, the decay rate of gravitational potential and $E_G$ to test gravity. However, simply taking the ratio of the two data sets is biased, since it renders (even statistical) errors in the denominator into systematic errors in $R$. Furthermore, it is not optimal in minimizing statistical errors of $R$. Based on the Bayesian analysis and the usual assumption of Gaussian error in the data, we derive an analytical expression of the posterior PDF $P(R)$. This result enables fast and unbiased $R$ measurement, with minimal statistical errors. Furthermore, it relies on no underlying model other than the proportionality relation between the two data sets. Even more generally, it applies to the cases where the proportionality relation holds for the underlying physics/statistics instead of the two data sets directly. It also applies to the case of multiple ratios ($R\rightarrow {\bf R}=(R_1,R_2,\cdots)$). We take the lensing ratio as an example to demonstrate our method. We take lenses as DESI imaging survey galaxies, and sources as DECaLS cosmic shear and \emph{Planck} CMB lensing. We restrict the analysis to the ratio between CMB lensing and cosmic shear. The resulting $P(R$), for multiple lens-shear pairs, are all nearly Gaussian. The S/N of measured $R$ ranges from $5.3$ to $8.4$. We perform several tests to verify the robustness of the above result.

  • The first direct measurement of gravitational potential decay rate at cosmological scales and improved dark energy constraint

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The integrated Sachs-Wolfe (ISW) effect probes the decay rate ($DR$) of large scale gravitational potential and therefore provides unique constraint on dark energy (DE). However its constraining power is degraded by the ISW measurement, which relies on cross-correlating with the large scale structure (LSS) and suffers from uncertainties in galaxy bias and matter clustering. In combination with lensing-LSS cross-correlation, $DR$ can be isolated in a way free of uncertainties in galaxy bias and matter clustering. We applied this proposal to the combination of the DR8 galaxy catalogue of DESI imaging surveys and Planck cosmic microwave background (CMB) maps. We achieved the first $DR$ measurement, with a total significance of $3.2\sigma$. We verified the measurements at three redshift bins ($[0.2,0.4)$, $[0.4, 0.6)$, $[0.6,0.8]$), with two LSS tracers (the "low-density points" and the conventional galaxy positions). Despite its relatively low S/N, the addition of $DR$ significantly improves dark energy constraints, over SDSS baryon acoustic oscillation (BAO) data alone or Pantheon supernovae (SN) compilation alone. For flat $w$CDM cosmology, the improvement in the precision of $\Omega_m$ is a factor of 1.8 over BAO and 1.5 over SN. For the DE equation of state $w$, the improvement factor is 1.3 over BAO and 1.4 over SN. These improvements demonstrate $DR$ as a useful cosmological probe, and therefore we advocate its usage in future cosmological analysis.

  • Forecasts on CMB lensing observations with AliCPT-1

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: AliCPT-1 is the first Chinese CMB experiment aiming for high precision measurement of Cosmic Microwave Background B-mode polarization. The telescope, currently under deployment in Tibet, will observe in two frequency bands centered at 90 and 150 GHz. We forecast the CMB lensing reconstruction, lensing-galaxy as well as lensing-CIB (Cosmic Infrared Background) cross correlation signal-to-noise ratio (SNR) for AliCPT-1. We consider two stages with different integrated observation time, namely "4 module*yr" (first stage) and "48 module*yr" (final stage). For lensing reconstruction, we use three different quadratic estimators, namely temperature-only, polarization-only and minimum-variance estimators, using curved sky geometry. We take into account the impact of inhomogeneous hit counts as well as of the mean-field bias due to incomplete sky coverage. In the first stage, our results show that the 150 GHz channel is able to measure the lensing signal at $15\sigma$ significance with the minimum-variance estimator. In the final stage, the measurement significance will increase to $31\sigma$. We also combine the two frequency data in the harmonic domain to optimize the SNR. Our result show that the coadding procedure can significantly reduce the reconstruction bias in the multiple range l>800. Thanks to the high quality of the polarization data in the final stage of AliCPT-1, the EB estimator will dominate the lensing reconstruction in this stage. We also estimate the SNR of cross-correlations between AliCPT-1 CMB lensing and other tracers of the large scale structure of the universe. For its cross-correlation with DESI galaxies/quasars, we report the cross-correlation SNR = 10-20 for the 4 redshift bins at 0.05展开 -->

  • Using angular two-point correlations to self-calibrate the photometric redshift distributions of DECaLS DR9

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Calibrating the redshift distributions of photometric galaxy samples is essential in weak lensing studies. The self-calibration method combines angular auto- and cross-correlations between galaxies in multiple photometric redshift (photo-$z$) bins to reconstruct the scattering rates matrix between redshift bins. In this paper, we test a recently proposed self-calibration algorithm using the DECaLS Data Release 9 and investigate to what extent the scattering rates are determined. We first mitigate the spurious angular correlations due to imaging systematics by a machine learning based method. We then improve the algorithm for $\chi^2$ minimization and error estimation. Finally, we solve for the scattering matrices, carry out a series of consistency tests and find reasonable agreements: (1) finer photo-$z$ bins return a high-resolution scattering matrix, and it is broadly consistent with the low-resolution matrix from wider bins; (2) the scattering matrix from the Northern Galactic Cap is almost identical to that from Southern Galactic Cap; (3) the scattering matrices are in reasonable agreement with those constructed from the power spectrum and the weighted spectroscopic subsample. We also evaluate the impact of cosmic magnification. Although it changes little the diagonal elements of the scattering matrix, it affects the off-diagonals significantly. The scattering matrix also shows some dependence on scale cut of input correlations, which may be related to a known numerical degeneracy between certain scattering pairs. This work demonstrates the feasibility of the self-calibration method in real data and provides a practical alternative to calibrate the redshift distributions of photometric samples.