按提交时间
按主题分类
按作者
按机构
您选择的条件: Pengyu Wen
  • Simultaneous ground-state cooling of multiple degenerate mechanical modes through cross-Kerr effect

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Simultaneous ground-state cooling of multiple degenerate mechanical modes is a tough issue in optomechanical system due to the existence of the dark mode effect. Here we propose a universal and scalable method to break the dark mode effect of two degenerate mechanical modes by introducing the cross-Kerr (CK) nonlinearity. At most four stable steady states can be achieved in our scheme in the presence of the CK effect, different from the bistable behavior of the standard optomechanical system. Under the constant input laser power, the effective detuning and mechanical resonant frequency can be modulated by the CK nonlinearity, which results in an optimal CK coupling strength for cooling. Similarly, there will be an optimal input laser power for cooling when the CK coupling strength stays fixed. Our scheme can be extended to break the dark mode effect of multiple degenerate mechanical modes by introducing more than one CK effects. To fulfill the requirement of the simultaneous ground-state cooling of N multiple degenerate mechanical modes N-1 CK effects with different strengths are needed. Our proposal provides new insights in dark mode control and might pave the way to manipulating of multiple quantum states in macroscopic system.

  • Optomechanically induced transparency and directional amplification in a non-Hermitian optomechanical lattice

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Cavity optomechanics is important in both quantum information processing and basic physics research. In this paper, we propose an optomechanical lattice which manifests non-Hermitian physics . We first use the non-Bloch band theory to investigate the energy spectrum and transmission property of an optomechanical lattice. The generalized Brillouin zone of the system is calculated with the help of the resultant. And the periodical boundary condition (PBC) and open boundary condition energy spectrum are given, subsequently. By introducing probe laser on different sites we observed the directional amplification of the system. The direction of the amplification is analyzed combined with the non-Hermitian skin effect. The frequency that supports the amplification is analyzed by considering the PBC energy spectrum. By introducing probe laser on one site we investigate the onsite transmission property. Optomechanically induced transparency (OMIT) can be achieved in our system. By varying the parameters and size of the system, the OMIT peak can be effectively modulated or even turned into optomechanically induced amplification . Our system shows its potential as the function of a single-way signal filter. And our model can be extended to other non-Hermitian Bosonic model which may possess topological features and bipolar non-Hermitian skin effect.