Your conditions: Chun-Hua Dong
  • Synthetic five-wave mixing in an integrated microcavity for visible-telecom entanglement generation

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Nonlinear optics processes lie at the heart of photonics and quantum optics for their indispensable role in light sources and information processing. During the past decades, the three- and four-wave mixing ($\chi^{(2)}$ and $\chi^{(3)}$) effects have been extensively studied, especially in the micro-/nano-structures by which the photon-photon interaction strength is greatly enhanced. So far, the high-order nonlinearity beyond the $\chi^{(3)}$ has rarely been studied in dielectric materials due to their weak intrinsic nonlinear susceptibility, even in high-quality microcavities. Here, an effective five-wave mixing process ($\chi^{(4)}$) is synthesized for the first time, by incorporating $\chi^{(2)}$ and $\chi^{(3)}$ processes in a single microcavity. The coherence of the synthetic $\chi^{(4)}$ is verified by generating time-energy entangled visible-telecom photon-pairs, which requires only one drive laser at the telecom waveband. The photon pair generation rate from the synthetic process shows an enhancement factor over $500$ times upon intrinsic five-wave mixing. Our work demonstrates a universal approach of nonlinear synthesis via photonic structure engineering at the mesoscopic scale rather than material engineering, and thus opens a new avenue for realizing high-order optical nonlinearities and exploring novel functional photonic devices.

  • Highly tunable broadband coherent wavelength conversion with a fiber-based optomechanical system

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The modern information networks are built on hybrid systems working at disparate optical wavelengths. Coherent interconnects for converting photons between different wavelengths are highly desired. Although coherent interconnects have conventionally been realized with nonlinear optical effects, those systems require demanding experimental conditions such as phase matching and/or cavity enhancement, which not only bring difficulties in experimental implementation but also set a narrow operating bandwidth (typically in MHz to GHz range as determined by the cavity linewidth). Here, we propose and experimentally demonstrate coherent information transfer between two orthogonally propagating light beams of disparate wavelengths in a fiber-based optomechanical system, which does not require any sort of phase matching or cavity enhancement of the pump beam. The coherent process is demonstrated by phenomena of optomechanically induced transparency and absorption. Our scheme not only significantly simplifies the experimental implementation of coherent wavelength conversion, but also extends the operating bandwidth to that of an optical fiber (tens of THz), which will enable a broad range of coherent-optics-based applications such as optical sensing, spectroscopy, and communication.

  • Spectrally multiplexed and ultrabright entangled photon pairs in a lithium niobate microresonator

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: On-chip bright quantum sources with multiplexing ability are extremely high in demand for the integrated quantum networks with unprecedented scalability and complexity. Here, we demonstrate an ultrabright and broadband biphoton quantum source generated in a lithium niobate microresonator system.Without introducing the conventional domain poling, the on-chip microdisk produces entangled photon pairs covering a broad bandwidth promised by natural phase matching in spontaneous parametric down conversion.Experimentally, the multiplexed photon pairs are characterized by $30\ \rm nm$ bandwidth limited by the filtering system, which can be furthered enlarged.Meanwhile, the generation rate reaches $5.13\ {\rm MHz}/\upmu \rm W$ with a coincidence-to-accidental ratio up to $804$.Besides, the quantum source manifests the prominent purity with heralded single photon correlation $g_H^{(2)}(0)=0.0098\pm0.0021$ and energy-time entanglement with excellent interference visibility of $96.5\%\pm1.9\%$. Such quantum sources at the telecommunication band pave the way for high-dimensional entanglement and future integrated quantum information systems.

  • Break the efficiency limitations of dissipative Kerr soliton using nonlinear couplers

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Dissipative Kerr soliton (DKS) offers a compact solution of coherent comb sources and holds huge potential for applications, but has long been suffering from poor power conversion efficiency when driving by a continuous-wave laser. Here, a general approach to resolving this challenge is provided. By deriving the critical coupling condition of a multimode nonlinear optics system in a generalized theoretical framework, two efficiency limitations of the conventional pump method of DKS are revealed: the effective coupling rate is too small and is also power-dependent. Nonlinear couplers are proposed to sustain the DKS indirectly through nonlinear energy conversion processes, realizing a power-adaptive effective coupling rate to the DKS and matching the total dissipation rate of the system, which promises near-unity power conversion efficiencies. For instance, a conversion efficiency exceeding $90\:\%$ is predicted for aluminum nitride microrings with a nonlinear coupler utilizing second-harmonic generation. The nonlinear coupler approach for high-efficiency generation of DKS is experimentally feasible as its mechanism applies to various nonlinear processes, including Raman and Brillouin scattering, and thus paves the way of micro-solitons towards practical applications.

  • Self-induced optical non-reciprocity

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Non-reciprocal optical components are indispensable in optical applications, and their realization without any magnetic field arose increasing research interests in photonics. Exciting experimental progress has been achieved by either introducing spatial-temporal modulation of the optical medium or combining Kerr-type optical nonlinearity with spatial asymmetry in photonic structures. However, extra driving fields are required for the first approach, while the isolation of noise and the transmission of the signal cannot be simultaneously achieved for the other approach. Here, we experimentally demonstrate a new concept of nonlinear non-reciprocal susceptibility for optical media and realize the completely passive isolation of optical signals without any external bias field. The self-induced isolation by the input signal is demonstrated with an extremely high isolation ratio of 63.4 dB, a bandwidth of 2.1 GHz for 60 dB isolation, and a low insertion loss of around 1 dB. Furthermore, novel functional optical devices are realized, including polarization purification and non-reciprocal leverage. The demonstrated nonlinear non-reciprocity provides a versatile tool to control light and deepen our understanding of light-matter interactions, and enables applications ranging from topological photonics to unidirectional quantum information transfer in a network.

  • Nonlinear optical radiation of a lithium niobate microcavity

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The nonlinear optical radiation of an integrated lithium niobate microcavity is demonstrated, which has been neglected in previous studies of nonlinear photonic devices. We find that the nonlinear coupling between confined optical modes on the chip and continuum modes in free space can be greatly enhanced on the platform of integrated microcavity, with feasible relaxation of the phase-matching condition. With an infrared pump laser, we observe the vertical radiation of second-harmonic wave at the visible band, which indicates a robust phase-matching-free chip-to-free-space frequency converter and also unveils an extra energy dissipation channel for integrated devices. Such an unexpected coherent nonlinear interaction between the free-space beam and the confined mode is also validated by the different frequency generation. Furthermore, based on the phase-matching-free nature of the nonlinear radiation, we build an integrated atomic gas sensor to characterize Rb isotopes with a single telecom laser. The unveiled mechanism of nonlinear optical radiation is universal for all dielectric photonic integrated devices, and provides a simple and robust chip-to-free-space as well as visible-to-telecom interface.

  • Controllable atomic collision in a tight optical dipole trap

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Single atoms are interesting candidates for studying quantum optics and quantum information processing. Recently, trapping and manipulation of single atoms using tight optical dipole traps have generated considerable interest. Here we report an experimental investigation of the dynamics of atoms in a modified optical dipole trap with a backward propagating dipole trap beam, where a change in the two-atom collision rate by six times has been achieved. The theoretical model presented gives a prediction of high probabilities of few-atom loading rates under proper experimental conditions. This work provides an alternative approach to the control of the few-atom dynamics in a dipole trap and the study of the collective quantum optical effects of a few atoms.

  • Non-reciprocal frequency conversion and mode routing in a microresonator

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The transportation of photons and phonons typically obeys the principle of reciprocity. Breaking reciprocity of these bosonic excitations will enable the corresponding non-reciprocal devices, such as isolators and circulators. Here, we use two optical modes and two mechanical modes in a microresonator to form a four-mode plaquette via radiation pressure force. The phase-controlled non-reciprocal routing between any two modes with completely different frequencies is demonstrated, including the routing of phonon to phonon (MHz to MHz), photon to phonon (THz to MHz), and especially photon to photon with frequency difference of around 80 THz for the first time. In addition, one more mechanical mode is introduced to this plaquette to realize a phononic circulator in such single microresonator. The non-reciprocity is derived from interference between multi-mode transfer processes involving optomechanical interactions in an optomechanical resonator. It not only demonstrates the non-reciprocal routing of photons and phonons in a single resonator but also realizes the non-reciprocal frequency conversion for photons and circulation for phonons, laying a foundation for studying directional routing and thermal management in an optomechanical hybrid network.

  • Single-sideband microwave-to-optical conversion in high-Q ferrimagnetic microspheres

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Coherent conversion of microwave and optical photons can significantly expand the ability to control the information processing and communication systems. Here, we experimentally demonstrate the microwave-to-optical frequency conversion in a magneto-optical whispering gallery mode microcavity. By applying a magnetic field parallel to the microsphere equator, the intra-cavity optical field will be modulated when the magnon is excited by the microwave drive, leading to microwave-to-optical conversion via the magnetic Stokes and anti-Stokes scattering processes. The observed single sideband conversion phenomenon indicates a non-trivial optical photon-magnon interaction mechanism, which is derived from the magnon induced both the frequency shift and modulated coupling rate of optical modes. In addition, we demonstrate the single-sideband frequency conversion with an ultrawide tuning range up to 2.5GHz, showing its great potential in microwave-to-optical conversion.

  • Planar Integrated Magneto Optical Trap

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: Abstract The magneto-optical trap (MOT) is an essential tool for collecting and preparing cold atoms with a wide range of applications. We demonstrate a planar-integrated MOT by combining an optical grating chip with a magnetic coil chip. The flat grating chip simplifies the conventional six-beam configuration down to a single laser beam; the flat coil chip replaces the conventional anti-Helmholtz coils of a cylindrical geometry. We trap 10^{4} cold ^{87}\text{Rb} atoms in the planar-integrated MOT, at a point 3-9 mm above the chip surface. This novel configuration effectively reduces the volume, weight, and complexity of the MOT, bringing benefits to applications including gravimeter, clock and quantum memory devices.

  • Unraveling the Angular Symmetry of Optical Force in a Solid Dielectric

    Subjects: Optics >> Quantum optics submitted time 2023-02-19

    Abstract: The textbook-accepted formulation of electromagnetic force was proposed by Lorentz in the 19th century, but its validity has been challenged due to incompatibility with the special relativity and momentum conservation. The Einstein-Laub formulation, which can reconcile those conflicts, was suggested as an alternative to the Lorentz formulation. However, intense debates on the exact force are still going on due to lack of experimental evidence. Here, we report the first experimental investigation of angular symmetry of optical force inside a solid dielectric, aiming to distinguish the two formulations. The experiments surprisingly show that the optical force exerted by a Gaussian beam has components with the angular mode number of both 2 and 0, which cannot be explained solely by the Lorentz or the Einstein-Laub formulation. Instead, we found a modified Helmholtz theory by combining the Lorentz force with additional electrostrictive force could explain our experimental results. Our results represent a fundamental leap forward in determining the correct force formulation, and will update the working principles of many applications involving electromagnetic forces.