您选择的条件: Qun Hao
  • Spin-dependent metalens with intensity-adjustable dual-focused vortex beams

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Vortex beams with orbital angular momentum has been attracting tremendous attention due to their considerable applications ranging from optical tweezers to quantum information processing. Metalens, an ultra-compact and multifunctional device, provide a desired platform for designing vortex beams. A spin-dependent metalens can boost the freedom to further satisfy practical applications. By combining geometric phase and propagation phase, we propose and demonstrate an approach to design a spin-dependent metalens generating dual-focused vortex beams along longitudinal or transverse direction, i.e., metalenses with predesigned spin-dependent phase profiles. Under the illumination of an elliptical polarization incident beam, two spin-dependent focused vortex beams can be observed, and the relative focal intensity of them can be easily adjusted by modulating the ellipticity of the incident beam. Moreover, we also demonstrated that the separate distance between these dual-focused beams and their topological charges could be simultaneously tailored at will, which may have a profound impact on optical trapping and manipulation in photonics.

  • Ultralow loss hollow-core negative curvature fibers with nested elliptical antiresonance tubes

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Hollow-core negative curvature fibers can confine light within air core and have small nonlinearity and dispersion and high damage threshold, thereby attracting a great deal of interest in the field of hollow core fibers. However, reducing the loss of hollow-core negative curvature fibers is a serious problem. On this basis, three new types of fibers with different nested tube structures are proposed in the near-infrared spectral regions and compared in detail with a previously proposed hollow-core negative curvature fiber. We used finite-element method for numerical simulation studies of their transmission loss, bending loss, and single-mode performance, and then the transmission performance of various structural fibers is compared. We found that the nested elliptical antiresonant fiber 1 has better transmission performance than that of the three other types of fibers in the spectral range of 0.72-1.6 {\mu}m. Results show that the transmission loss of the LP01 mode is as low as 6.45*10-6 dB/km at {\lambda} = 1.06 {\mu}m. To the best of our knowledge, the record low level of transmission loss of hollow-core antiresonant fibers with nested tube structures was created. In addition, the nested elliptical antiresonant fiber 1 has better bending resistance, and its bending loss was below 2.99*10-2 dB/km at 5 cm bending radius.

  • Omnidirectional ghost imaging system && unwrapping-free panoramic ghost imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Ghost imaging (GI) is a novel imaging method, which can reconstruct the object information by the light intensity correlation measurements. However, at present, the field of view (FOV) is limited to the illuminating range of the light patterns. To enlarge FOV of GI efficiently, here we proposed the omnidirectional ghost imaging system (OGIS), which can achieve a 360{\deg} omnidirectional FOV at one shot only by adding a curved mirror. Moreover, by designing the retina-like annular patterns with log-polar patterns, OGIS can obtain unwrapping-free undistorted panoramic images with uniform resolution, which opens up a new way for the application of GI.

  • Temporally and Spatially variant-resolution illumination patterns in computational ghost imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Conventional computational ghost imaging (CGI) uses light carrying a sequence of patterns with uniform-resolution to illuminate the object, then performs correlation calculation based on the light intensity value reflected by the target and the preset patterns to obtain object image. It requires a large number of measurements to obtain high-quality images, especially if high-resolution images are to be obtained. To solve this problem, we developed temporally variable-resolution illumination patterns, replacing the conventional uniform-resolution illumination patterns with a sequence of patterns of different imaging resolutions. In addition, we propose to combine temporally variable-resolution illumination patterns and spatially variable-resolution structure to develop temporally and spatially variable-resolution (TSV) illumination patterns, which not only improve the imaging quality of the region of interest (ROI) but also improve the robustness to noise. The methods using proposed illumination patterns are verified by simulations and experiments compared with CGI. For the same number of measurements, the method using temporally variable-resolution illumination patterns has better imaging quality than CGI, but it is less robust to noise. The method using TSV illumination patterns has better imaging quality in ROI than the method using temporally variable-resolution illumination patterns and CGI under the same number of measurements. We also experimentally verify that the method using TSV patterns have better imaging performance when applied to higher resolution imaging. The proposed methods are expected to solve the current computational ghost imaging that is difficult to achieve high-resolution and high-quality imaging.

  • Robust Fourier ptychographic microscopy via a physics-based defocusing strategy for calibrating angle-varied LED illumination

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychographic microscopy (FPM) is a recently developed computational imaging technique for wide-field, high-resolution microscopy with a high space-bandwidth product. It integrates the concepts of synthetic aperture and phase retrieval to surpass the resolution limit imposed by the employed objective lens. In the FPM framework, the position of each sub-spectrum needs to be accurately known to ensure the success of the phase retrieval process. Different from the conventional methods with mechanical adjustment or data-driven optimization strategies, here we report a physics-based defocusing strategy for correcting large-scale positional deviation of the LED illumination in FPM. Based on a subpixel image registration process with a defocused object, we can directly infer the illumination parameters including the lateral offsets of the light source, the in-plane rotation angle of the LED array, and the distance between the sample and the LED board. The feasibility and effectiveness of our method are validated with both simulation study and experiments. We show that the reported strategy can obtain high-quality reconstruction of both the complex object and pupil even the LED array is randomly placed under the sample with both unknown lateral offsets and rotations. As such, it enables the development of robust FPM systems by reducing the requirement on fine mechanical adjustment and data-driven correction in the construction process.

  • Pose correction scheme for camera-scanning Fourier ptychography based on camera calibration and homography transform

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychography (FP), as a computational imaging method, is a powerful tool to improve imaging resolution. Camera-scanning Fourier ptychography extends the application of FP from micro to macro creatively. Due to the non-ideal scanning of the camera driven by the mechanical translation stage, the pose error of the camera occurs, greatly degrading the reconstruction quality, while a precise translation stage is expensive and not suitable for wide-range imaging. Here, to improve the imaging performance of camera-scanning Fourier ptychography, we propose a pose correction scheme based on camera calibration and homography transform approaches. The scheme realizes the accurate alignment of data set and location error correction in the frequency domain. Simulation and experimental results demonstrate this method can optimize the reconstruction results and realize high-quality imaging effectively. Combined with the feature recognition algorithm, the scheme provides the possibility for applying FP in remote sensing imaging and space imaging.

  • Robust full-pose-parameter estimation for the LED array in Fourier ptychographic microscopy

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychographic microscopy (FPM) can achieve quantitative phase imaging with a large space-bandwidth product by synthesizing a set of low-resolution intensity images captured under angularly varying illuminations. Determining accurate illumination angles is critical because the consistency between actual systematic parameters and those used in the recovery algorithm is essential for high-quality imaging. This paper presents a full-pose-parameter and physics-based method for calibrating illumination angles. Using a physics-based model constructed with general knowledge of the employed microscope and the brightfield-to-darkfield boundaries inside captured images, we can solve for the full-pose parameters of misplaced LED array, which consist of the distance between the sample and the LED array, two orthogonal lateral shifts, one in-plane rotation angle, and two tilt angles, to correct illumination angles precisely. The feasibility and effectiveness of the proposed method for recovering random or remarkable pose parameters have been demonstrated by both qualitative and quantitative experiments. Due to the completeness of the pose parameters, the clarity of the physical model, and the high robustness for arbitrary misalignments, our method can significantly facilitate the design, implementation, and application of concise and robust FPM platforms.

  • Complementary Fourier single-pixel imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Single-pixel imaging, with the advantages of a wide spectrum, beyond-visual-field imaging, and robustness to light scattering, has attracted increasing attention in recent years. Fourier single-pixel imaging (FSI) can reconstruct sharp images under sub-Nyquist sampling. However, the conventional FSI has difficulty with balancing the imaging quality and efficiency. To overcome this issue, we proposed a novel approach called complementary Fourier single-pixel imaging (CFSI) to reduce measurements while retaining its robustness. The complementary nature of Fourier patterns based on a four-step phase-shift algorithm is combined with the complementary nature of a digital micromirror device. CFSI only requires two phase-shifted patterns to obtain one Fourier spectral value. Four light intensity values are obtained by load the two patterns, and the spectral value is calculated through differential measurement, which has good robustness to noise. The proposed method is verified by simulations and experiments compared with FSI based on two-, three-, and four-step phase shift algorithms. CFSI performed better than the other methods under the condition that the best imaging quality of CFSI is not reached. The reported technique provides an alternative approach to realize real-time and high-quality imaging.

  • Parallel Fourier Ptychography reconstruction

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychography has attracted a wide range of focus for its ability of large space-bandwidth-produce, and quantative phase measurement. It is a typical computational imaging technique which refers to optimizing both the imaging hardware and reconstruction algorithms simultaneously. The data redundancy and inverse problem algorithms are the sources of FPM's excellent performance. But at the same time, this large amount of data processing and complex algorithms also greatly reduce the imaging speed. In this article, we propose a parallel Fourier ptychography reconstruction framework consisting of three levels of parallel computing parts and implemented it with both central processing unit (CPU) and compute unified device architecture (CUDA) platform. In the conventional FPM reconstruction framework, the sample image is divided into multiple sub-regions for separately processing because the illumination angles for different subregions are varied for the same LED and different subregions contain different defocus distances due to the non-planar distribution or non-ideal posture of biological sample. We first build a parallel computing sub-framework in spatial domain based on the above-mentioned characteristics. And then, by utilizing the sequential characteristics of different spectrum regions to update, a parallel computing sub-framework in the spectrum domain is carried out in our scheme. The feasibility of the proposed parallel FPM reconstruction framework is verified with different experimental results acquired with the system we built.

  • Fourier ptychography multi-parameter neural network with composite physical priori optimization

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Fourier ptychography microscopy(FP) is a recently developed computational imaging approach for microscopic super-resolution imaging. By turning on each light-emitting-diode (LED) located on different position on the LED array sequentially and acquiring the corresponding images that contain different spatial frequency components, high spatial resolution and quantitative phase imaging can be achieved in the case of large field-of-view. Nevertheless, FPM has high requirements for the system construction and data acquisition processes, such as precise LEDs position, accurate focusing and appropriate exposure time, which brings many limitations to its practical applications. In this paper, inspired by artificial neural network, we propose a Fourier ptychography multi-parameter neural network (FPMN) with composite physical prior optimization. A hybrid parameter determination strategy combining physical imaging model and data-driven network training is proposed to recover the multi layers of the network corresponding to different physical parameters, including sample complex function, system pupil function, defocus distance, LED array position deviation and illumination intensity fluctuation, etc. Among these parameters, LED array position deviation is recovered based on the features of brightfield to darkfield transition low-resolution images while the others are recovered in the process of training of the neural network. The feasibility and effectiveness of FPMN are verified through simulations and actual experiments. Therefore FPMN can evidently reduce the requirement for practical applications of FPM.

  • Window Filtering Algorithm for Pulsed Light Coherent Combining of Low Repetition Frequency

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The multi-dithering method has been well verified in phase locking of polarization coherent combination experiment. However, it is hard to apply to low repetition frequency pulsed lasers, since there exists an overlap frequency domain between pulse laser and the amplitude phase noise and traditional filters cannot effectively separate phase noise. Aiming to solve the problem in this paper, we propose a novel method of pulse noise detection, identification, and filtering based on the autocorrelation characteristics between noise signals. In the proposed algorithm, a self-designed window algorithm is used to identify the pulse, and then the pulse signal group in the window is replaced by interpolation, which effectively filter the pulse signal doped in the phase noise within 0.1 ms. After filtering the pulses in the phase noise, the phase difference of two pulsed beams (10 kHz) is successfully compensated to zero in 1 ms, and the coherent combination of closed-loop phase lock is realized. At the same time, the phase correction times are few, the phase lock effect is stable, and the final light intensity increases to the ideal value (0.9 Imax).

  • Optimization of retina-like illumination patterns in ghost imaging

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Ghost imaging (GI) reconstructs images using a single-pixel or bucket detector, which has the advantages of scattering robustness, wide spectrum and beyond-visual-field imaging. However, this technique needs large amount of measurements to obtain a sharp image. There have been a lot of methods proposed to overcome this disadvantage. Retina-like patterns, as one of the compressive sensing approaches, enhance the imaging quality of region of interest (ROI) while not increase measurements. The design of the retina-like patterns determines the performance of the ROI in the reconstructed image. Unlike the conventional method to fill in ROI with random patterns, we propose to optimize retina-like patterns by filling in the ROI with the patterns containing the sparsity prior of objects. This proposed method is verified by simulations and experiments compared with conventional GI, retina-like GI and GI using patterns optimized by principal component analysis. The method using optimized retina-like patterns obtain the best imaging quality in ROI than other methods. Meanwhile, the good generalization ability of the optimized retina-like pattern is also verified. While designing the size and position of the ROI of retina-like pattern, the feature information of the target can be obtained to optimize the pattern of ROI. This proposed method paves the way for realizing high-quality GI.