您选择的条件: Xiankai Sun
  • Room-temperature continuous-wave Dirac-vortex topological lasers on silicon

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Robust laser sources are a fundamental building block for contemporary information technologies. Originating from condensed-matter physics, the concept of topology has recently entered the realm of optics, offering fundamentally new design principles for lasers with enhanced robustness. In analogy to the well-known Majorana fermions in topological superconductors, Dirac-vortex states have recently been investigated in passive photonic systems and are now considered as a promising candidate for single-mode large-area lasers. Here, we experimentally realize the first Dirac-vortex topological lasers in InAs/InGaAs quantum-dot materials monolithically grown on a silicon substrate. We observe room-temperature continuous-wave single-mode linearly polarized vertical laser emission at a telecom wavelength. Most importantly, we confirm that the wavelength of the Dirac-vortex laser is topologically robust against variations in the cavity size, and its free spectral range defies the universal inverse scaling law with the cavity size. These lasers will play an important role in CMOS-compatible photonic and optoelectronic systems on a chip.

  • Highly tunable broadband coherent wavelength conversion with a fiber-based optomechanical system

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The modern information networks are built on hybrid systems working at disparate optical wavelengths. Coherent interconnects for converting photons between different wavelengths are highly desired. Although coherent interconnects have conventionally been realized with nonlinear optical effects, those systems require demanding experimental conditions such as phase matching and/or cavity enhancement, which not only bring difficulties in experimental implementation but also set a narrow operating bandwidth (typically in MHz to GHz range as determined by the cavity linewidth). Here, we propose and experimentally demonstrate coherent information transfer between two orthogonally propagating light beams of disparate wavelengths in a fiber-based optomechanical system, which does not require any sort of phase matching or cavity enhancement of the pump beam. The coherent process is demonstrated by phenomena of optomechanically induced transparency and absorption. Our scheme not only significantly simplifies the experimental implementation of coherent wavelength conversion, but also extends the operating bandwidth to that of an optical fiber (tens of THz), which will enable a broad range of coherent-optics-based applications such as optical sensing, spectroscopy, and communication.

  • A topological Dirac-vortex parametric phonon laser

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Nonlinear topological photonic and phononic systems have recently aroused intense interests in exploring new phenomena that have no counterparts in electronic systems. The squeezed bosonic interaction in these systems is particularly interesting, because it can modify the vacuum fluctuations of topological states, drive them into instabilities, and lead to topological parametric lasers. However, these phenomena remain experimentally elusive because of limited nonlinearities in most existing topological bosonic systems. Here, we experimentally realized topological parametric lasers based on nonlinear nanoelectromechanical Dirac-vortex cavities with strong squeezed interaction. Specifically, we parametrically drove the Dirac-vortex cavities to provide phase-sensitive amplification for topological phonons, and observed phonon lasing above the threshold. Additionally, we confirmed that the lasing frequency is robust against fabrication disorders and that the free spectral range defies the universal inverse scaling law with increased cavity size, which benefit the realization of large-area single-mode lasers. Our results represent an important advance in experimental investigations of topological physics with large bosonic nonlinearities and parametric gain.

  • Realization of bound states in the continuum in anti-PT-symmetric optical systems

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Novel physical concepts that originate from quantum mechanics, such as non-Hermitian systems (dealing mostly with PT and anti-PT symmetry) and bound states in the continuum (BICs), have attracted great interest in the optics and photonics community. To date, BICs and anti-PT symmetry seem to be two independent topics. Here, we for the first time propose a parallel cascaded-resonator system to achieve BICs and anti-PT symmetry simultaneously. We found that the requirements for the Fabry-P\'erot BIC and anti-PT symmetry can both be satisfied when the phase shift between any two adjacent resonators is an integer multiple of {\pi}. We further analyzed the cascaded-resonator systems which consist of different numbers of resonators and demonstrated their robustness to fabrication imperfections. The proposed structure can readily be realized on an integrated photonic platform, which can have many applications that benefit from the advantages of both BICs and anti-PT symmetry, such as ultralow-linewidth lasing, enhanced optical sensing, and optical signal processing.

  • Second-Harmonic Generation in Etchless Lithium Niobate Nanophotonic Waveguides with Bound States in the Continuum

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Bound states in the continuum (BICs) have been extensively studied in various systems since its first proposal in quantum mechanics. Photonic BICs can enable optical mode confinement and provide field enhancement for nonlinear optics, but they have rarely been explored in nonlinear integrated photonic waveguides. Applying BICs in photonic integrated circuits enables low-loss light guidance and routing in low-refractive-index waveguides on high-refractive-index substrates, which is suitable for integrated photonics with nonlinear materials. Here, we report experimental demonstration of second-harmonic generation from telecom to near-visible wavelengths on an etchless lithium niobate platform by using a photonic BIC for the second-harmonic mode. The devices feature second-harmonic conversion efficiency of 0.175%W-1cm-2 and excellent thermal stability with a wavelength shift of only 1.7 nm from 25{\deg}C to 100{\deg}C. Our results represent a new paradigm of nonlinear integrated photonics on a cost-effective and convenient platform, which can enable a broad range of on-chip applications such as optical parametric generation, signal processing, and quantum photonics.

  • Surface acoustic microwave photonic filters on etchless lithium niobate integrated platform

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Lithium niobate on insulator emerges as a promising platform for integrated microwave photonics because of its capability of ultralow-loss guidance and high-efficiency modulation of light. Chip-level integration of microwave filters is important for signal processing in the 5G/6G wireless communication. Here, we employed the principle of bound states in the continuum for low-loss waveguiding on an etchless lithium niobate integrated platform, and realized high-performance microwave photonic filters thereon. These microwave photonic filters consist of a high-quality photonic microcavity modulated by piezoelectrically excited surface acoustic waves. Acoustic time delays from 21 to 106 ns and passbands with bandwidth as narrow as 0.89 MHz were achieved in the fabricated filters operating at gigahertz frequencies. Our demonstration may open up new applications on the lithium niobate integrated platform, such as optical communication, signal processing, and beam steering.

  • Observation of bound states in the continuum in a micromechanical resonator

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Bound states in the continuum (BICs) refer to physical states that possess intrinsic zero dissipation loss even though they are located in the continuous energy spectrum. BICs have been widely explored in optical and acoustic structures, leading to applications in sensing and lasing. Realizing BICs in micromechanical structures is of significant importance for both fundamental research and engineering applications. Here, we fabricated, with CMOS-compatible processes on a silicon chip, a wheel-shaped micromechanical resonator, in which we experimentally observed the BIC in the micromechanical domain. Such BICs result from destructive interference between two dissipative modes of the mechanical structure under broken azimuthal symmetry. These BICs are found to be robust against size variations of the dissipation channels. The demonstrated mechanical BIC can be obtained with a large and robust supporting structure, which substantially reduces device fabrication difficulty and allows for its operation in versatile environments for broader application areas. Our results open a new way of phonon trapping in micromechanical structures with dissipation channels, and produce long phonon lifetimes that are desired in many mechanical applications such as mechanical oscillators, sensors, and quantum information processors.

  • Visual observation of optical Floquet-Bloch oscillations

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Bloch oscillations, an important transport phenomenon, have extensively been studied in static systems but remain largely unexplored in Floquet systems. Here, we propose a new type of Bloch oscillations, namely the "Floquet-Bloch oscillations," which refer to rescaled Bloch oscillations with a period of extended least common multiple of the modulation and Bloch periods. We report the first visual observation of such Floquet-Bloch oscillations in femtosecond-laser-written waveguide arrays by using waveguide fluorescence microscopy. These Floquet-Bloch oscillations exhibit exotic properties, such as fractal spectrum and fractional Floquet tunneling. This new transport mechanism offers an intriguing method of wave manipulation, which has significant applications in coherent quantum transport.

  • Unraveling the Angular Symmetry of Optical Force in a Solid Dielectric

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The textbook-accepted formulation of electromagnetic force was proposed by Lorentz in the 19th century, but its validity has been challenged due to incompatibility with the special relativity and momentum conservation. The Einstein-Laub formulation, which can reconcile those conflicts, was suggested as an alternative to the Lorentz formulation. However, intense debates on the exact force are still going on due to lack of experimental evidence. Here, we report the first experimental investigation of angular symmetry of optical force inside a solid dielectric, aiming to distinguish the two formulations. The experiments surprisingly show that the optical force exerted by a Gaussian beam has components with the angular mode number of both 2 and 0, which cannot be explained solely by the Lorentz or the Einstein-Laub formulation. Instead, we found a modified Helmholtz theory by combining the Lorentz force with additional electrostrictive force could explain our experimental results. Our results represent a fundamental leap forward in determining the correct force formulation, and will update the working principles of many applications involving electromagnetic forces.