按提交时间
按主题分类
按作者
按机构
您选择的条件: Xianyu Tan
  • The Jiao Tong University Spectroscopic Telescope Project

    分类: 天文学 >> 天文仪器与技术 提交时间: 2024-02-07 合作期刊: 《天文技术与仪器(英文)》

    摘要:The Jiao Tong University Spectroscopic Telescope (JUST) is a 4.4-meter f/6.0 segmented-mirror telescope dedicated to spectroscopic observations. The JUST primary mirror is composed of 18 hexagonal segments, each with a diameter of 1.1 m. JUST provides two Nasmyth platforms for placing science instruments. One Nasmyth focus fits a field of view of 10 ′ and the other has an extended field of view of 1.2° with correction optics. A tertiary mirror is used to switch between the two Nasmyth foci. JUST will be installed at a site at Lenghu in Qinghai Province, China, and will conduct spectroscopic observations with three types of instruments to explore the dark universe, trace the dynamic universe, and search for exoplanets: (1) a multi-fiber (2000 fibers) medium-resolution spectrometer (R=4 000−5 000) to spectroscopically map galaxies and large-scale structure; (2) an integral field unit (IFU) array of 500 optical fibers and/or a long-slit spectrograph dedicated to fast follow-ups of transient sources for multi-messenger astronomy; (3) a high-resolution spectrometer (R~100 000) designed to identify Jupiter analogs and Earth-like planets, with the capability to characterize the atmospheres of hot exoplanets.

  • A Mini-Chemical Scheme with Net Reactions for 3D GCMs II. 3D thermochemical modelling of WASP-39b and HD 189733b

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The chemical inventory of hot Jupiter (HJ) exoplanets atmospheres continue to be observed by various ground and space based instruments in increasing detail and precision. It is expected that some HJs will exhibit strong non-equilibrium chemistry characteristics in their atmospheres, which might be inferred from spectral observations. We aim to model the three dimensional thermochemical non-equilibrium chemistry in the atmospheres of the HJs WASP-39b and HD 189733b. We couple a lightweight, reduced chemical network `mini-chem' that utilises net reaction rate tables to the Exo-FMS General Circulation Model (GCM). We perform GCM models of the exoplanets WASP-39b and HD 189733b as case studies of the coupled mini-chem scheme. The GCM results are then post-processed using the 3D radiative-transfer model gCMCRT to produce transmission and emission spectra to assess the impact of non-equilibrium chemistry on their observable properties. Both simulations show significant departures from chemical equilibrium (CE) due to the dynamical motions of the atmosphere. The spacial distribution of species generally follows closely the dynamical features of the atmosphere rather than the temperature field. Each molecular species exhibits a different quench level in the simulations, also dependent on the latitude of the planet. Major differences are seen in the transmission and emission spectral features between the CE and kinetic models. Our simulations indicate that considering the 3D kinetic chemical structures of HJ atmospheres has an important impact on physical interpretation of observational data. Drawing bulk atmospheric parameters from fitting feature strengths may lead to inaccurate interpretation of chemical conditions in the atmosphere of HJs. Our open source mini-chem module is simple to couple with contemporary HJ GCM models without substantially increasing required computational resources.

  • The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems II: A 1 to 20 Micron Spectrum of the Planetary-Mass Companion VHS 1256-1257 b

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present the highest fidelity spectrum to date of a planetary-mass object. VHS 1256 b is a $<$20 M$_\mathrm{Jup}$ widely separated ($\sim$8\arcsec, a = 150 au), young, planetary-mass companion that shares photometric colors and spectroscopic features with the directly imaged exoplanets HR 8799 c, d, and e. As an L-to-T transition object, VHS 1256 b exists along the region of the color-magnitude diagram where substellar atmospheres transition from cloudy to clear. We observed VHS 1256~b with \textit{JWST}'s NIRSpec IFU and MIRI MRS modes for coverage from 1 $\mu$m to 20 $\mu$m at resolutions of $\sim$1,000 - 3,700. Water, methane, carbon monoxide, carbon dioxide, sodium, and potassium are observed in several portions of the \textit{JWST} spectrum based on comparisons from template brown dwarf spectra, molecular opacities, and atmospheric models. The spectral shape of VHS 1256 b is influenced by disequilibrium chemistry and clouds. We directly detect silicate clouds, the first such detection reported for a planetary-mass companion.

  • Weak Seasonality on Temperate Exoplanets Around Low-mass Stars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Planets with non-zero obliquity and/or orbital eccentricity experience seasonal variations of stellar irradiation at local latitudes. The extent of the atmospheric response can be crudely estimated by the ratio between the orbital timescale and the atmospheric radiative timescale. Given a set of atmospheric parameters, we show that this ratio depends mostly on the stellar properties and is independent of orbital distance and planetary equilibrium temperature. For Jupiter-like atmospheres, this ratio is $\ll1$ for planets around very-low-mass M dwarfs and $\gtrsim1$ when the stellar mass is greater than about 0.6 solar mass. Complications can arise from various factors, including varying atmospheric metallicity, clouds, and atmospheric dynamics. Given the eccentricity and obliquity, the seasonal response is expected to be systematically weaker for gaseous exoplanets around low-mass stars and stronger for those around more massive stars. The amplitude and phase lag of atmospheric seasonal variations as a function of host stellar mass are quantified by idealized analytic models. At the infrared emission level in the photosphere, the relative amplitudes of thermal flux and temperature perturbations are negligible, and their phase lags are closed to $-90^{\circ}$ for Jupiter-like planets around very-low-mass stars. The relative amplitudes and phase lags increase gradually with increasing stellar mass. With a particular stellar mass, the relative amplitude and phase lag decrease from low to high infrared optical depth. We also present numerical calculations for a better illustration of the seasonal behaviors. Lastly, we discuss implications for the atmospheric circulation and future atmospheric characterization of exoplanets in systems with different stellar masses.

  • Jet Streams and Tracer Mixing in the Atmospheres of Brown Dwarfs and Isolated Young Giant Planets

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Observations of brown dwarfs and relatively isolated young extrasolar giant planets have provided unprecedented details to probe atmospheric dynamics in a new regime. Questions about mechanisms governing global circulation remain to be addressed. Previous studies have shown that small-scale, randomly varying thermal perturbations resulting from interactions between convection and the overlying stratified layers can drive zonal jet streams, waves, and turbulence. Here, we improve upon our previous general circulation model by using a two-stream grey radiative transfer scheme to represent more realistic heating and cooling rates. We examine the formation of zonal jets and their time evolution, and vertical mixing of passive tracers including clouds and chemical species. Under relatively weak radiative and frictional dissipation, robust zonal jets with speeds up to a few hundred $\rm m\;s^{-1}$ are typical outcomes. The off-equatorial jets tend to be pressure-independent while the equatorial jets exhibit significant vertical wind shear. Models with strong dissipation inhibit jet formation and have isotropic turbulence in off-equatorial regions. Quasi-periodic oscillations of the equatorial flow with periods ranging from tens of days to months are prevalent at relatively low atmospheric temperatures. Sub-micron cloud particles can be transported to several scale heights above the condensation level, while larger particles form thinner layers. Cloud decks are inhomogeneous near their cloud tops. Chemical tracers with chemical timescales $>10^5$ s can be driven out of equilibrium. The equivalent vertical diffusion coefficients, $K_{\mathrm{zz}}$, for the global-mean tracer, are diagnosed from our models and are typically on the order of $1\sim10^2\rm m^2\;s^{-1}$. Finally, we derive an analytic estimation of $K_{\mathrm{zz}}$ for different types of tracers under relevant conditions.

  • HST/WFC3 Complete Phase-resolved Spectroscopy of White Dwarf-Brown Dwarf Binaries WD 0137 and EPIC 2122

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Brown dwarfs in close-in orbits around white dwarfs offer an excellent opportunity to investigate properties of fast-rotating, tidally-locked, and highly-irradiated atmospheres. We present Hubble Space Telescope Wide Field Camera 3 G141 phase-resolved observations of two brown dwarf-white dwarf binaries: WD 0137-349 and EPIC 212235321. Their 1.1 to 1.7 $\mu$m phase curves demonstrate rotational modulations with semi-amplitudes of $5.27\pm0.02$% and $29.1\pm0.1$%; both can be well fit by multi-order Fourier series models. The high-order Fourier components have the same phase as the first order and are likely caused by hot spots located at the substellar points, suggesting inefficient day/night heat transfer. Both brown dwarfs' phase-resolved spectra can be accurately represented by linear combinations of their day- and night-side spectra. Fitting the irradiated brown dwarf model grids to the day-side spectra require a filling factor of ~50%, further supporting a hot spot dominating the emission of the day-sides. The night-side spectrum of WD 0137-349B is reasonably well fit by non-irradiated substellar models and the one of EPIC 212235321B can be approximated by a Planck function. We find strong spectral variations in the brown dwarfs' day/night flux and brightness temperature contrasts, which highlights the limitations of band-integrated measurements in probing heat transfer in irradiated objects. On the color-magnitude diagram, WD 0137-349B evolves along a cloudless model track connecting the early-L and mid-T spectral types, demonstrating that clouds and disequilibrium chemistry have a negligible effect on this object. A full interpretation of these high-quality phase-resolved spectra calls for new models that couple atmospheric circulation and radiative transfer under high-irradiation conditions.

  • The effect of interior heat flux on the atmospheric circulation of hot and ultra-hot Jupiters

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Many hot and ultra-hot Jupiters have inflated radii, implying that their interiors retain significant entropy from formation. These hot interiors lead to an enhanced internal heat flux that impinges upon the atmosphere from below. In this work, we study the effect of this hot interior on the atmospheric circulation and thermal structure of hot and ultra-hot Jupiters. To do so, we incorporate the population-level predictions from evolutionary models of hot and ultra-hot Jupiters as input for a suite of General Circulation Models (GCMs) of their atmospheric circulation with varying semi-major axis and surface gravity. We conduct simulations with and without a hot interior, and find that there are significant local differences in temperature of up to hundreds of Kelvin and in wind speeds of hundreds of m s$^{-1}$ or more across the observable atmosphere. These differences persist throughout the parameter regime studied, and are dependent on surface gravity through the impact on photosphere pressure. These results imply that the internal evolution and atmospheric thermal structure and dynamics of hot and ultra-hot Jupiters are coupled. As a result, a joint approach including both evolutionary models and GCMs may be required to make robust predictions for the atmospheric circulation of hot and ultra-hot Jupiters.

  • Convection modeling of pure-steam atmospheres

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Condensable species are crucial in shaping planetary climate. A wide range of planetary climate systems involve understanding non-dilute condensable substances and their influence on climate dynamics. There has been progress on large-scale dynamical effects and on 1D convection parameterization, but resolved 3D moist convection remains unexplored in non-dilute conditions, though it can have a profound impact on temperature/humidity profiles and cloud structure. We tackle this problem for pure-steam atmospheres using three-dimensional, high-resolution numerical simulations of convection in post-runaway atmospheres where the water reservoir at the surface has been exhausted. We show that the atmosphere is comprised of two characteristic regions, an upper condensing region dominated by gravity waves and a lower noncondensing region characterized by convective overturning cells. Velocities in the condensing region are much smaller than those in the lower noncondensing region, and the horizontal temperature variation is small overall. Condensation in the thermal photosphere is largely driven by radiative cooling and tends to be statistically homogeneous. Some condensation also happens deeper, near the boundary of the condensing region, due to triggering by gravity waves and convective penetrations and exhibit random patchiness. This qualitative structure is insensitive to varying model parameters, but quantitative details may differ. Our results confirm theoretical expectations that atmospheres close to the pure-steam limit do not have organized deep convective plumes in the condensing region. The generalized convective parameterization scheme discussed in Ding & Pierrehumbert (2016) is appropriate to handle the basic structure of atmospheres near the pure-steam limit but is difficult to capture gravity waves and their mixing that appear in 3D convection-resolving models.

  • Influences of internal forcing on atmospheric circulations of irradiated giant planets

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Close-in giant planets with strong stellar irradiation show atmospheric circulation patterns with strong equatorial jets and global-scale stationary waves. So far, almost all modeling works on atmospheric circulations of such giant planets have mainly considered external radiation alone, without taking into account the role of internal heat fluxes or just treating it in very simplified ways. Here, we study atmospheric circulations of strongly irradiated giant planets by considering the effect of internal forcing, which is characterized by small-scale stochastic interior thermal perturbations, using a three-dimensional atmospheric general circulation model. We show that the perturbation-excited waves can largely modify atmospheric circulation patterns in the presence of relatively strong internal forcing. Specifically, our simulations demonstrate three circulation regimes: superrotation regime, midlatitude-jet regime, and quasi-periodic oscillation regime, depending on the relative importance of external and internal forcings. It is also found that strong internal forcing can cause noticeable modifications of the thermal phase curves.

  • The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems I: High Contrast Imaging of the Exoplanet HIP 65426 b from 2-16 $\mu$m

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present JWST Early Release Science (ERS) coronagraphic observations of the super-Jupiter exoplanet, HIP 65426 b, with the Near-Infrared Camera (NIRCam) from 2-5 $\mu$m, and with the Mid-Infrared Instrument (MIRI) from 11-16 $\mu$m. At a separation of $\sim$0.82" (87$^{+108}_{-31}$ au), HIP 65426 b is clearly detected in all seven of our observational filters, representing the first images of an exoplanet to be obtained by JWST, and the first ever direct detection of an exoplanet beyond 5 $\mu$m. These observations demonstrate that JWST is exceeding its nominal predicted performance by up to a factor of 10, with measured 5$\sigma$ contrast limits of $\sim$4$\times10^{-6}$ ($\sim$2.4 $\mu$Jy) and $\sim$2$\times10^{-4}$ ($\sim$10 $\mu$Jy) at 1" for NIRCam at 3.6 $\mu$m and MIRI at 11.3 $\mu$m, respectively. These contrast limits provide sensitivity to sub-Jupiter companions with masses as low as 0.3 $M_\mathrm{Jup}$ beyond separations of $\sim$100 au. Together with existing ground-based near-infrared data, the JWST photometry are well fit by a BT-SETTL atmospheric model from 1-16 $\mu$m, and span $\sim$97% of HIP 65426 b's luminous range. Independent of the choice of forward model atmosphere we measure an empirical bolometric luminosity that is tightly constrained between $\mathrm{log}\!\left(L_\mathrm{bol}/L_{\odot}\right)$=-4.35 to -4.21, which in turn provides a robust mass constraint of 7.1$\pm$1.1 $M_\mathrm{Jup}$. In totality, these observations confirm that JWST presents a powerful and exciting opportunity to characterise the population of exoplanets amenable to direct imaging in greater detail.

  • Early Release Science of the Exoplanet WASP-39b with JWST NIRSpec G395H

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Measuring the abundances of carbon and oxygen in exoplanet atmospheres is considered a crucial avenue for unlocking the formation and evolution of exoplanetary systems. Access to an exoplanet's chemical inventory requires high-precision observations, often inferred from individual molecular detections with low-resolution space-based and high-resolution ground-based facilities. Here we report the medium-resolution (R$\sim$600) transmission spectrum of an exoplanet atmosphere between 3-5 $\mu$m covering multiple absorption features for the Saturn-mass exoplanet WASP-39b, obtained with JWST NIRSpec G395H. Our observations achieve 1.46x photon precision, providing an average transit depth uncertainty of 221 ppm per spectroscopic bin, and present minimal impacts from systematic effects. We detect significant absorption from CO$_2$ (28.5$\sigma$) and H$_2$O (21.5$\sigma$), and identify SO$_2$ as the source of absorption at 4.1 $\mu$m (4.8$\sigma$). Best-fit atmospheric models range between 3 and 10x solar metallicity, with sub-solar to solar C/O ratios. These results, including the detection of SO$_2$, underscore the importance of characterising the chemistry in exoplanet atmospheres, and showcase NIRSpec G395H as an excellent mode for time series observations over this critical wavelength range.

  • Early Release Science of the exoplanet WASP-39b with JWST NIRISS

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Transmission spectroscopy provides insight into the atmospheric properties and consequently the formation history, physics, and chemistry of transiting exoplanets. However, obtaining precise inferences of atmospheric properties from transmission spectra requires simultaneously measuring the strength and shape of multiple spectral absorption features from a wide range of chemical species. This has been challenging given the precision and wavelength coverage of previous observatories. Here, we present the transmission spectrum of the Saturn-mass exoplanet WASP-39b obtained using the SOSS mode of the NIRISS instrument on the JWST. This spectrum spans $0.6 - 2.8 \mu$m in wavelength and reveals multiple water absorption bands, the potassium resonance doublet, as well as signatures of clouds. The precision and broad wavelength coverage of NIRISS-SOSS allows us to break model degeneracies between cloud properties and the atmospheric composition of WASP-39b, favoring a heavy element enhancement ("metallicity") of $\sim 10 - 30 \times$ the solar value, a sub-solar carbon-to-oxygen (C/O) ratio, and a solar-to-super-solar potassium-to-oxygen (K/O) ratio. The observations are best explained by wavelength-dependent, non-gray clouds with inhomogeneous coverage of the planet's terminator.

  • Patchy Forsterite Clouds in the Atmospheres of Two Highly Variable Exoplanet Analogs

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present an atmospheric retrieval analysis of a pair of highly variable, $\sim200~$Myr old, early-T type planetary-mass exoplanet analogs SIMP J01365662+0933473 and 2MASS J21392676+0220226 using the Brewster retrieval framework. Our analysis, which makes use of archival $1-15~\mu$m spectra, finds almost identical atmospheres for both objects. For both targets, we find that the data is best described by a patchy, high-altitude forsterite (Mg$_2$SiO$_4$) cloud above a deeper, optically thick iron (Fe) cloud. Our model constrains the cloud properties well, including the cloud locations and cloud particle sizes. We find that the patchy forsterite slab cloud inferred from our retrieval may be responsible for the spectral behavior of the observed variability. Our retrieved cloud structure is consistent with the atmospheric structure previously inferred from spectroscopic variability measurements, but clarifies this picture significantly. We find consistent C/O ratios for both objects which supports their formation within the same molecular cloud in the Carina-Near Moving Group. Finally, we note some differences in the constrained abundances of H$_2$O and CO which may be caused by data quality and/or astrophysical processes such as auroral activity and their differing rotation rates. The results presented in this work provide a promising preview of the detail with which we will characterize extrasolar atmospheres with JWST, which will yield higher quality spectra across a wider wavelength range.

  • A broadband thermal emission spectrum of the ultra-hot Jupiter WASP-18b

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Close-in giant exoplanets with temperatures greater than 2,000 K (''ultra-hot Jupiters'') have been the subject of extensive efforts to determine their atmospheric properties using thermal emission measurements from the Hubble and Spitzer Space Telescopes. However, previous studies have yielded inconsistent results because the small sizes of the spectral features and the limited information content of the data resulted in high sensitivity to the varying assumptions made in the treatment of instrument systematics and the atmospheric retrieval analysis. Here we present a dayside thermal emission spectrum of the ultra-hot Jupiter WASP-18b obtained with the NIRISS instrument on JWST. The data span 0.85 to 2.85 $\mu$m in wavelength at an average resolving power of 400 and exhibit minimal systematics. The spectrum shows three water emission features (at $>$6$\sigma$ confidence) and evidence for optical opacity, possibly due to H$^-$, TiO, and VO (combined significance of 3.8$\sigma$). Models that fit the data require a thermal inversion, molecular dissociation as predicted by chemical equilibrium, a solar heavy element abundance (''metallicity'', M/H = 1.03$_{-0.51}^{+1.11}$ $\times$ solar), and a carbon-to-oxygen (C/O) ratio less than unity. The data also yield a dayside brightness temperature map, which shows a peak in temperature near the sub-stellar point that decreases steeply and symmetrically with longitude toward the terminators.