您选择的条件: Chris Messenger
  • A quantum algorithm for gravitational wave matched filtering

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Quantum computational devices, currently under development, have the potential to accelerate data analysis techniques beyond the ability of any classical algorithm. We propose the application of a quantum algorithm for the detection of unknown signals in noisy data. We apply Grover's algorithm to matched-filtering, a signal processing technique that compares data to a number of candidate signal templates. In comparison to the classical method, this provides a speed-up proportional to the square-root of the number of templates, which would make possible otherwise intractable searches. We demonstrate both a proof-of-principle quantum circuit implementation, and a simulation of the algorithm's application to the detection of the first gravitational wave signal GW150914. We discuss the time complexity and space requirements of our algorithm as well as its implications for the currently computationally-limited searches for continuous gravitational waves.

  • MLGWSC-1: The first Machine Learning Gravitational-Wave Search Mock Data Challenge

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present the results of the first Machine Learning Gravitational-Wave Search Mock Data Challenge (MLGWSC-1). For this challenge, participating groups had to identify gravitational-wave signals from binary black hole mergers of increasing complexity and duration embedded in progressively more realistic noise. The final of the 4 provided datasets contained real noise from the O3a observing run and signals up to a duration of 20 seconds with the inclusion of precession effects and higher order modes. We present the average sensitivity distance and runtime for the 6 entered algorithms derived from 1 month of test data unknown to the participants prior to submission. Of these, 4 are machine learning algorithms. We find that the best machine learning based algorithms are able to achieve up to 95% of the sensitive distance of matched-filtering based production analyses for simulated Gaussian noise at a false-alarm rate (FAR) of one per month. In contrast, for real noise, the leading machine learning search achieved 70%. For higher FARs the differences in sensitive distance shrink to the point where select machine learning submissions outperform traditional search algorithms at FARs $\geq 200$ per month on some datasets. Our results show that current machine learning search algorithms may already be sensitive enough in limited parameter regions to be useful for some production settings. To improve the state-of-the-art, machine learning algorithms need to reduce the false-alarm rates at which they are capable of detecting signals and extend their validity to regions of parameter space where modeled searches are computationally expensive to run. Based on our findings we compile a list of research areas that we believe are the most important to elevate machine learning searches to an invaluable tool in gravitational-wave signal detection.

  • Exploring the sky localization and early warning capabilities of third generation gravitational wave detectors in three-detector network configurations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: This work characterises the sky localization and early warning performance of networks of third generation gravitational wave detectors, consisting of different combinations of detectors with either the Einstein Telescope or Cosmic Explorer configuration in sites in North America, Europe and Australia. Using a Fisher matrix method which includes the effect of earth rotation, we estimate the sky localization uncertainty for $1.4\text{M}\odot$-$1.4\text{M}\odot$ binary neutron star mergers at distances $40\text{Mpc}$, $200\text{Mpc}$, $400\text{Mpc}$, $800\text{Mpc}$, $1600\text{Mpc}$, and an assumed astrophysical population up to redshift of 2 to characterize its performance for binary neutron star observations. We find that, for binary neutron star mergers at $200\text{Mpc}$ and a network consisting of the Einstein Telescope, Cosmic Explorer and an extra Einstein Telescope-like detector in Australia(2ET1CE), the upper limit of the size of the 90% credible region for the best localized 90% signals is $0.25\text{deg}^2$. For the simulated astrophysical distribution, this upper limit is $91.79\text{deg}^2$. If the Einstein Telescope-like detector in Australia is replaced with a Cosmic Explorer-like detector(1ET2CE), for $200\text{Mpc}$ case, the upper limit is $0.18\text{deg}^2$, while for astrophysical distribution, it is $56.77\text{deg}^2$. We note that the 1ET2CE network can detect 7.2% more of the simulated astrophysical population than the 2ET1CE network. In terms of early warning performance, we find that a network of 2ET1CE and 1ET2CE networks can both provide early warnings of the order of 1 hour prior to merger with sky localization uncertainties of 30 square degrees or less. Our study concludes that the 1ET2CE network is a good compromise between binary neutron stars detection rate, sky localization and early warning capabilities.