您选择的条件: Qiu-Sheng Gu
  • PGC 38025: A Star-forming Lenticular Galaxy With an Off-nuclear Star-forming Core

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Lenticular galaxies (S0s) were considered mainly as passive evolved spirals due to environmental effects for a long time; however, most S0s in the field cannot fit into this common scenario. In this work, we study one special case, SDSS J120237.07+642235.3 (PGC 38025), a star-forming field S0 galaxy with an off-nuclear blue core. We present optical integral field spectroscopic (IFS) observation with the 3.5 meter telescope at Calar Alto (CAHA) Observatory, and high-resolution millimeter observation with the NOrthern Extended Millimeter Array (NOEMA). We estimated the star formation rate (SFR = 0.446 $M_\odot yr^{-1}$) and gaseous metallicity (12 + log(O/H) = 8.42) for PGC 38025, which follows the star formation main sequence and stellar mass - metallicity relation. We found that the ionized gas and cold molecular gas in PGC 38025 show the same spatial distribution and kinematics, whilst rotating misaligned with stellar component. The off-nuclear blue core is locating at the same redshift as PGC 38025 and its optical spectrum suggest it is \rm H\,{\sc ii} region. We suggest that the star formation in PGC 38025 is triggered by a gas-rich minor merger, and the off-nuclear blue core might be a local star-formation happened during the accretion/merger process.

  • Systematic biases in determining dust attenuation curves through galaxy SED fitting

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: While the slope of the dust attenuation curve ($\delta$) is found to correlate with effective dust attenuation ($A_V$) as obtained through spectral energy distribution (SED) fitting, it remains unknown how the fitting degeneracies shape this relation. We examine the degeneracy effects by fitting SEDs of a sample of local star-forming galaxies (SFGs) selected from the Galaxy And Mass Assembly survey, in conjunction with mock galaxy SEDs of known attenuation parameters. A well-designed declining starburst star formation history is adopted to generate model SED templates with intrinsic UV slope ($\beta_0$) spanning over a reasonably wide range. The best-fitting $\beta_0$ for our sample SFGs shows a wide coverage, dramatically differing from the limited range of $\beta_0<-2.2$ for a starburst of constant star formation. Our results show that strong degeneracies between $\beta_0$, $\delta$, and $A_V$ in the SED fitting induce systematic biases leading to a false $A_V$--$\delta$ correlation. Our simulation tests reveal that this relationship can be well reproduced even when a flat $A_V$--$\delta$ relation is taken to build the input model galaxy SEDs. The variations in best-fitting $\delta$ are dominated by the fitting errors. We show that assuming a starburst with constant star formation in SED fitting will result in a steeper attenuation curve, smaller degeneracy errors, and a stronger $A_V$--$\delta$ relation. Our findings confirm that the $A_V$--$\delta$ relation obtained through SED fitting is likely driven by the systematic biases induced by the fitting degeneracies between $\beta_0$, $\delta$, and $A_V$.

  • Observations of cold gas and star formation in dwarf S0 galaxies

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Very little work has been done on star formation in dwarf lenticular galaxies (S0s). We present 2D-spectroscopic and millimetre observations made by Centro Astronomico Hispano Aleman (CAHA) 3.5 m optical and the IRAM-30 m millimetre telescopes, respectively, for a sample of four dwarf S0 galaxies with multiple star formation regions in the field environment. We find that although most of the sources deviate from the star forming main sequence relation, they all follow the Kennicutt-Schmidt law. After comparing the stellar and Halpha kinematics, we find that the velocity fields of both stars and ionized gas do not show regular motion and the velocity dispersions of stars and ionized gas are low in the regions with high star formation, suggesting these star-forming S0 galaxies still have significant rotation. This view can be supported by the result that most of these dwarf S0 galaxies are classified as fast rotators. The ratio of average atomic gas mass to stellar mass (~ 47%) is much greater than that of molecular gas mass to stellar mass (~ 1%). In addition, the gas-phase metallicities in the star-forming regions are lower than that of the non-star-forming regions. These results indicate that the extended star formation may originate from the combination of abundant atomic hydrogen, long dynamic time scale and low-density environment.