您选择的条件: Ze-Ming Zhou
  • The nature of the Li enrichment in the most Li-rich giant star

    分类: 天文学 >> 恒星和银河系 提交时间: 2023-12-31

    摘要: About 1% of giants have anomalously high Li abundances in their atmospheres, conflicting directly with the prediction of the standard stellar evolution models. This finding makes the production and evolution of Li in the Universe intriguing, not only in the sense of Big Bang nucleosynthesis or the interstellar medium, but also for the evolution of stars. Decades of efforts have been put into explaining why such extreme objects exist, yet the origins of Lirich giants are still being debated. Here we report the discovery of the most Li-rich giant known to date, with a very high Li abundance of 4.51. This rare phenomenon was observed coincidentally with another short-term event: the star is experiencing its luminosity bump on the red giant branch. Such a high Li abundance indicates that the star might be at the very beginning of its Li-rich phase, which provides a great opportunity to investigate the origin and evolution of Li in the Galaxy. A detailed nuclear simulation is presented with up-to-date reaction rates to recreate the Li enrichment process in this star. Our results provide tight constraints on both observational and theoretical points of view, suggesting that low-mass giants can internally produce Li to a very high level through 7Be transportation during the red giant phase.

  • LTD064402+245919: A Subgiant with a 1-3 M$_{\odot}$ Undetected Companion Identified from LAMOST-TD Data

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Single-line spectroscopic binaries recently contribute to the stellar-mass black hole discovery, independently of the X-ray transient method. We report the identification of a single-line binary system LTD064402+245919, with an orbital period of 14.50 days. The observed component is a subgiant with a mass of 2.77$\pm$0.68M$_{\odot}$, radius 15.5$\pm$2.5R$_{\odot}$, effective temperature $T_{\rm eff}$ 4500$\pm$200K, and surface gravity log\emph{g} 2.5$\pm$0.25dex. The discovery makes use of the LAMOST time-domain (LAMOST-TD) and ZTF survey. Our general-purpose software pipeline applies the Lomb-Scargle periodogram to determine the orbital period and uses machine-learning to classify the variable type from the folded light curves. We apply a combined model to estimate the orbital parameters from both the light and radial velocity curves, taking constraints on the primary star mass, mass function, and detection limit of secondary luminosity into consideration. We obtain a radial velocity semi-amplitude of 44.6$\pm$1.5 km s$^{-1}$, mass ratio of 0.73$\pm$0.07, and an undetected component mass of 2.02$\pm$0.49M$_{\odot}$ when the type of the undetected component is not set. We conclude that the inclination is not well constrained, and that the secondary mass is larger than 1M$_{\odot}$ when the undetected component is modelled as a compact object. According to our investigations using an MCMC simulation, increasing the spectra SNR by a factor of 3 would enable the secondary light to be distinguished (if present). The algorithm and software in this work are able to serve as general-purpose tools for the identification of compact objects quiescent in X-rays.