您选择的条件: David V. Stark
  • The ALMaQUEST Survey XV: The Dependence of the Molecular-to-Atomic Gas Ratios on Resolved Optical Diagnostics

    分类: 天文学 >> 天文学 提交时间: 2024-03-30

    摘要: The atomic-to-molecular gas conversion is a critical step in the baryon cycle of galaxies, which sets the initial conditions for subsequent star formation and influences the multi-phase interstellar medium. We compiled a sample of 94 nearby galaxies with observations of multi-phase gas contents by utilizing public H I, CO, and optical IFU data from the MaNGA survey together with new FAST H I observations. In agreement with previous results, our sample shows that the global molecular-to-atomic gas ratio ($R_{\rm mol} \equiv$ log $M_{\rm H_2}/M_{\rm H\ I}$) is correlated with the global stellar mass surface density $\mu_*$ with a Kendall's $\tau$ coefficient of 0.25 and $p < 10^{-3}$, less tightly but still correlated with stellar mass and NUV$-$ r color, and not related to the specific star formation rate (sSFR). The cold gas distribution and kinematics inferred from the H I and CO global profile asymmetry and shape do not significantly rely on $R_{\rm mol}$. Thanks to the availability of kpc-scale observations of MaNGA, we decompose galaxies into H II, composite, and AGN-dominated regions by using the BPT diagrams. With increasing $R_{\rm mol}$, the fraction of H II regions within 1.5 effective radius decreases slightly; the density distribution in the spatially resolved BPT diagram also changes significantly, suggesting changes in metallicity and ionization states. Galaxies with high $R_{\rm mol}$ tend to have high oxygen abundance, both at one effective radius with a Kendall's $\tau$ coefficient of 0.37 ($p < 10^{-3}$) and their central regions. Among all parameters investigated here, the oxygen abundance at one effective radius has the strongest relation with global $R_{\rm mol}$, but the dependence of gas conversion on gas distribution and galaxy ionization states is weak.

  • SDSS-IV MaNGA: the physical origin of off-galaxy H$\alpha$ blobs in the local Universe

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: H$\alpha$ blobs are off-galaxy emission-line regions with weak or no optical counterparts. They are mostly visible in H$\alpha$ line, appearing as concentrated blobs. Such unusual objects have been rarely observed and studied, and their physical origin is still unclear. We have identified 13 H$\alpha$ blobs in the public data of MaNGA survey, by visually inspecting both the optical images and the spatially resolved maps of H$\alpha$ line for $\sim 4600$ galaxy systems. Among the 13 H$\alpha$ blobs, 2 were reported in previously MaNGA-based studies and 11 are newly discovered. This sample, though still small in size, is by far the largest sample with both deep imaging and integral field spectroscopy. Therefore, for the first time we are able to perform statistical studies to investigate the physical origin of H$\alpha$ blobs. We examine the physical properties of these H$\alpha$ blobs and their associated galaxies, including their morphology, environments, gas-phase metallicity, kinematics of ionized gas, and ionizing sources. We find that the H$\alpha$ blobs in our sample can be broadly divided into two groups. One is associated with interacting/merging galaxy systems, of which the ionization is dominated by shocks or diffuse ionized gas. It is likely that these H$\alpha$ blobs used to be part of their nearby galaxies, but were stripped away at some point due to tidal interactions. The other group is found in gas-rich systems, appearing as low-metallicity star-forming regions that are visually detached from the main galaxy. These H$\alpha$ blobs could be associated with faint disks, spiral arms, or dwarf galaxies.

  • MaNGA 8313-1901: gas accretion observed in a blue compact dwarf galaxy?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Gas accretion is an important process in the evolution of galaxies, but it has limited direct observational evidences. In this paper, we report the detection of a possible ongoing gas accretion event in a Blue Compact Dwarf (BCD) galaxy, MaNGA 8313-1901, observed by the Mapping Nearby Galaxies and Apache Point Observatory (MaNGA) program. This galaxy has a distinct off-centered blue clump to the northeast (the NE clump) that shows low metallicity and enhanced star-formation. The kinematics of the gas in the NE clump also seems to be detached from the host BCD galaxy. Together with the metallicity drop of the NE clump, it suggests that the NE clump likely has an external origin, such as the gas accretion or galaxy interaction, rather than an internal origin, such as an \hii~complex in the disk. After removing the underlying host component, we find that the spectrum of the "pure" clump can match very well with a modeled spectrum containing a stellar population of the young stars ($\le 7$ Myr) only. This may imply that the galaxy is experiencing an accretion of cold gas, instead of a merger event involving galaxies with significant pre-existing old stars. We also find signs of another clump (the SW clump) at the south-west corner of the host galaxy, and the two clumps may share the same origin of gas accretion.

  • Resolved Molecular Gas Observations of MaNGA Post-starbursts Reveal a Tumultuous Past

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Post-starburst galaxies (PSBs) have recently and rapidly quenched their star-formation, thus they are an important way to understand how galaxies transition from star-forming late-types to quiescent early-types. The recent discovery of large cold gas reservoirs in PSBs calls into question the theory that galaxies must lose their gas to become quiescent. Optical Integral Field Spectroscopy (IFS) surveys have revealed two classes of PSBs: central PSBs with central quenching regions and ring PSBs with quenching in their outskirts. We analyze a sample of 13 nearby (z < 0.1) PSBs with spatially resolved optical IFS data from the Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) survey and matched resolution Atacama Large (sub-)Millimeter Array (ALMA) observations of $^{12}$CO(1-0). Disturbed stellar kinematics in 7/13 of our PSBs and centrally concentrated molecular gas is consistent with a recent merger for most of our sample. In galaxies without merger evidence, alternate processes may funnel gas inwards and suppress star-formation, which may include outflows, stellar bars, and minor mergers or interactions. The star-formation efficiencies of the post-starburst regions in nearly half our galaxies are suppressed while the gas fractions are consistent with star-forming galaxies. AGN feedback may drive this stabilization, and we observe AGN-consistent emission in the centers of 5/13 galaxies. Finally, our central and ring PSBs have similar properties except the ionized and molecular gas in central PSBs is more disturbed. Overall, the molecular gas in our PSBs tends to be compact and highly disturbed, resulting in concentrated gas reservoirs unable to form stars efficiently.