您选择的条件: Eniko Regos
  • Constraints on Cosmological Parameters with a Sample of Type Ia Supernovae from JWST

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We investigate the potential of using a sample of very high-redshift ($2\lesssim z \lesssim6$) (VHZ) Type Ia supernovae (SNe~Ia) attainable by the James Webb Space Telescope (JWST) on constraining cosmological parameters. At such high redshifts, the age of the universe is young enough that the VHZ SNIa sample comprises the very first SNe~Ia of the universe, with progenitors among the very first generation of low mass stars that the universe has made. We show that the VHZ SNe~Ia can be used to disentangle systematic effects due to the luminosity distance evolution with redshifts intrinsic to SNIa standardization. Assuming that the systematic evolution can be described by a linear or logarithmic formula, we found that the coefficients of this dependence can be determined accurately and decoupled from cosmological models. Systematic evolution as large as 0.15 mag and 0.45 mag out to $z=5$ can be robustly separated from popular cosmological models for the linear and logarithmic evolution, respectively. The VHZ SNe~Ia will lay the foundation for quantifying the systematic redshift evolution of SNIa luminosity distance scales. When combined with SNIa surveys at comparatively lower redshifts, the VHZ SNe~Ia allow for a precise measurement of the history of the expansion of the universe from $z\sim 0$ to the epoch approaching reionization.

  • Forecast of Cosmological Constraints with Type Ia Supernovae from the Chinese Space Station Telescope

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The 2-m aperture Chinese Space Station Telescope (CSST), which observes at wavelengths ranging from 255 to 1000 nm, is expected to start science operations in 2024. An ultra-deep field observation program covering approximately 10 square degrees is proposed with supernovae (SNe) and other transients as one of its primary science drivers. This paper presents the simulated detection results of type Ia supernovae (SNe Ia) and explores the impact of new datasets on the determinations of cosmological parameters. The simulated observations are conducted with an exposure time of 150 s and cadences of 10, 20, and 30 days. The survey mode covering a total of 80 observations but with a random cadence in the range of 4 to 14 days is also explored. Our simulation results indicate that the CSST can detect up to $\sim 1800$ SNe Ia at z $<$ 1.3. The simulated SNe Ia are then used to constrain the cosmological parameters. The constraint on $\Omega_m$ can be improved by 37.5% using the 10-day cadence sample in comparison with the Pantheon sample. A deeper measurement simulation with a 300 s exposure time together with the Pantheon sample improves the current constraints on $\Omega_m$ by 58.3% and $\omega$ by 47.7%. Taking future ground-based SNe Ia surveys into consideration, the constraints on $\omega$ can be improved by 59.1%. The CSST ultra-deep field observation program is expected to discover large amounts of SNe Ia over a broad redshift span and enhance our understanding of the nature of dark energy.

  • Constraints on Cosmological Parameters with a Sample of Type Ia Supernovae from JWST

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We investigate the potential of using a sample of very high-redshift ($2\lesssim z \lesssim6$) (VHZ) Type Ia supernovae (SNe~Ia) attainable by the James Webb Space Telescope (JWST) on constraining cosmological parameters. At such high redshifts, the age of the universe is young enough that the VHZ SNIa sample comprises the very first SNe~Ia of the universe, with progenitors among the very first generation of low mass stars that the universe has made. We show that the VHZ SNe~Ia can be used to disentangle systematic effects due to the luminosity distance evolution with redshifts intrinsic to SNIa standardization. Assuming that the systematic evolution can be described by a linear or logarithmic formula, we found that the coefficients of this dependence can be determined accurately and decoupled from cosmological models. Systematic evolution as large as 0.15 mag and 0.45 mag out to $z=5$ can be robustly separated from popular cosmological models for the linear and logarithmic evolution, respectively. The VHZ SNe~Ia will lay the foundation for quantifying the systematic redshift evolution of SNIa luminosity distance scales. When combined with SNIa surveys at comparatively lower redshifts, the VHZ SNe~Ia allow for a precise measurement of the history of the expansion of the universe from $z\sim 0$ to the epoch approaching reionization.

  • Forecast of Cosmological Constraints with Type Ia Supernovae from the Chinese Space Station Telescope

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The 2-m aperture Chinese Space Station Telescope (CSST), which observes at wavelengths ranging from 255 to 1000 nm, is expected to start science operations in 2024. An ultra-deep field observation program covering approximately 10 square degrees is proposed with supernovae (SNe) and other transients as one of its primary science drivers. This paper presents the simulated detection results of type Ia supernovae (SNe Ia) and explores the impact of new datasets on the determinations of cosmological parameters. The simulated observations are conducted with an exposure time of 150 s and cadences of 10, 20, and 30 days. The survey mode covering a total of 80 observations but with a random cadence in the range of 4 to 14 days is also explored. Our simulation results indicate that the CSST can detect up to $\sim 1800$ SNe Ia at z $<$ 1.3. The simulated SNe Ia are then used to constrain the cosmological parameters. The constraint on $\Omega_m$ can be improved by 37.5% using the 10-day cadence sample in comparison with the Pantheon sample. A deeper measurement simulation with a 300 s exposure time together with the Pantheon sample improves the current constraints on $\Omega_m$ by 58.3% and $\omega$ by 47.7%. Taking future ground-based SNe Ia surveys into consideration, the constraints on $\omega$ can be improved by 59.1%. The CSST ultra-deep field observation program is expected to discover large amounts of SNe Ia over a broad redshift span and enhance our understanding of the nature of dark energy.