Your conditions: 李扬帆
  • Autonomous Navigation and Automatic Target Spraying Robot for Orchards

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: To realize the autonomous navigation and automatic target spraying of intelligent plant protect machinery in orchard, in this study, an autonomous navigation and automatic target spraying robot for orchards was developed. Firstly, a single 3D light detection and ranging (LiDAR) was used to collect fruit trees and other information around the robot. The region of interest (ROI) was determined using information on the fruit trees in the orchard (plant spacing, plant height, and row spacing), as well as the fundamental LiDAR parameters. Additionally, it must be ensured that LiDAR was used to detect the canopy information of a whole fruit tree in the ROI. Secondly, the point clouds within the ROI was two-dimension processing to obtain the fruit tree center of mass coordinates. The coordinate was the location of the fruit trees. Based on the location of the fruit trees, the row lines of fruit tree were obtained by random sample consensus (RANSAC) algorithm. The center line (navigation line) of the fruit tree row within ROI was obtained through the fruit tree row lines. The robot was controlled to drive along the center line by the angular velocity signal transmitted from the computer. Next, the ATRS's body speed and position were determined by encoders and the inertial measurement unit (IMU). And the collected fruit tree zoned canopy information was corrected by IMU. The presence or absence of fruit tree zoned canopy was judged by the logical algorithm designed. Finally, the nozzles were controlled to spray or not according to the presence or absence of corresponding zoned canopy. The conclusions were obtained. The maximum lateral deviation of the robot during autonomous navigation was 21.8 cm, and the maximum course deviation angle was 4.02�. Compared with traditional spraying, the automatic target spraying designed in this study reduced pesticide volume, air drift and ground loss by 20.06%, 38.68% and 51.40%, respectively. There was no significant difference between the automatic target spraying and the traditional spraying in terms of the percentage of air drift. In terms of the percentage of ground loss, automatic target spraying had 43% at the bottom of the test fruit trees and 29% and 28% at the middle of the test fruit trees and the left and right neighboring fruit trees. But in traditional spraying, the percentage of ground loss was, in that sequence, 25%, 38%, and 37%. The robot developted can realize autonomous navigation while ensuring the spraying effect, reducing the pesticides volume and loss.

  • Comparison of Droplet Deposition Performance Between Caterpillar Mist Sprayer and Six-Rotor Unmanned Aerial Vehicle in Mango Canopy

    Subjects: Agriculture, Forestry,Livestock & Aquatic Products Science >> Other Disciplines of Agriculture, Forestry,Livestock & Aquatic Products Science submitted time 2023-02-17 Cooperative journals: 《智慧农业(中英文)》

    Abstract: In order to solve the problems of pesticides abuse, nonuniformity deposition and low operating efficiency, build up the smart mango orchard, sedimentary properties of liquids in mango canopy of two orchard pesticide machinery, i.e., orchard caterpillar mist sprayer and six-rotor unmanned aerial vehicle (UAV) of were compared. Mango canopy was divided into upper, middle and lower canopy, tartrazine wsa selected as the tracer, high-definition printing paper and filter paper were used to collect pesticide droplets, the image processing methods such as deposition distribution uniformity were used to analyze the droplets. The experimental results showed that, for the surface droplets coverage rate of upper canopy leaf, unmanned aerial vehicle (UAV) was significantly higher than the cartipillar mist sprayer, there was no significant difference for the middle and lower canopy leaf. The the average coverage rate of both the front and back of leaves in UAV treatment group were 1.5~2 times for cartipillar mist sprayer, and got more deposition in back of leaves compare with caterpillar mist sprayer. The density of droplets on the front of the leaves of the mist sprayer treatment was significantly higher than that of the UAV treatment, but there was no significant difference on the back of the leaves. Both the front and back of the leaves of the plant protection UAV did not meet the requirements of disease and pest control with a low spray amount of 20/cm2. The liquid deposition of mist sprayer concentrated in the middle and lower canopy (61.1%), and while for the UAVs, it concentrated in the upper canopy (43.0%). The proportion of the deposition in the canopy was higher than that of the UAVs (48.6%), but the deposition capacity of mist sprayer in the upper canopy was insufficient, accounting for only 17%. The research shows that, compared with UAV, caterpillar mist sprayer is more suitable for the pest control of lower and middlein canopy, at the same time, the high density of droplets cover also has obvious advantages when spraying fungicide. UAV is more suitable for the external tidbits pest control of upper mango canopy, such as thrips, anthrax. According to the experimental results, a stereoscopic plant protection system can be built up in which can use the advantages of both caterpillar mist sprayer and UAV to achieve uniform coverage of pesticide in the mango tree canopy.