按提交时间
按主题分类
按作者
按机构
您选择的条件: Dominic M. Bowman
  • 3D hydrodynamic simulations of massive main-sequence stars II. Convective excitation and spectra of internal gravity waves

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Recent photometric observations of massive stars have identified a low-frequency power excess which appears as stochastic low-frequency variability in light curve observations. We present the oscillation properties of high resolution hydrodynamic simulations of a 25 $\mathrm{M}_\odot$ star performed with the PPMStar code. The model star has a convective core mass of $\approx\, 12\, \mathrm{M}_\odot$ and approximately half of the envelope simulated. From this simulation, we extract light curves from several directions, average them over each hemisphere, and process them as if they were real photometric observations. We show how core convection excites waves with a similar frequency as the convective time scale in addition to significant power across a forest of low and high angular degree $l$ modes. We find that the coherence of these modes is relatively low as a result of their stochastic excitation by core convection, with lifetimes on the order of 10s of days. Thanks to the still significant power at higher $l$ and this relatively low coherence, we find that integrating over a hemisphere produces a power spectrum that still contains measurable power up to the Brunt--V\"ais\"al\"a frequency. These power spectra extracted from the stable envelope are qualitatively similar to observations, with same order of magnitude yet lower characteristic frequency. This work further shows the potential of long-duration, high-resolution hydrodynamic simulations for connecting asteroseismic observations to the structure and dynamics of core convection and the convective boundary.

  • ET White Paper: To Find the First Earth 2.0

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose to develop a wide-field and ultra-high-precision photometric survey mission, temporarily named "Earth 2.0 (ET)". This mission is designed to measure, for the first time, the occurrence rate and the orbital distributions of Earth-sized planets. ET consists of seven 30cm telescopes, to be launched to the Earth-Sun's L2 point. Six of these are transit telescopes with a field of view of 500 square degrees. Staring in the direction that encompasses the original Kepler field for four continuous years, this monitoring will return tens of thousands of transiting planets, including the elusive Earth twins orbiting solar-type stars. The seventh telescope is a 30cm microlensing telescope that will monitor an area of 4 square degrees toward the galactic bulge. This, combined with simultaneous ground-based KMTNet observations, will measure masses for hundreds of long-period and free-floating planets. Together, the transit and the microlensing telescopes will revolutionize our understandings of terrestrial planets across a large swath of orbital distances and free space. In addition, the survey data will also facilitate studies in the fields of asteroseismology, Galactic archeology, time-domain sciences, and black holes in binaries.