您选择的条件: Greg L. Bryan
  • Arkenstone I: A Novel Method for Robustly Capturing High Specific Energy Outflows In Cosmological Simulations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Arkenstone is a new model for multiphase, stellar feedback driven galactic winds designed for inclusion in coarse resolution cosmological simulations. In this first paper of a series, we describe the features that allow Arkenstone to properly treat high specific energy wind components and demonstrate them using idealised non-cosmological simulations of a galaxy with a realistic CGM, using the Arepo code. Hot, fast gas phases with low mass loadings are predicted to dominate the energy content of multiphase outflows. In order to treat the huge dynamic range of spatial scales involved in cosmological galaxy formation at feasible computational expense, cosmological volume simulations typically employ a Lagrangian code or else use adaptive mesh refinement with a quasi-Lagrangian refinement strategy. However, it is difficult to inject a high specific energy wind in a Lagrangian scheme without incurring artificial burstiness. Additionally, the low densities inherent to this type of flow result in poor spatial resolution. Arkenstone addresses these issues with a novel scheme for coupling energy into the ISM/CGM transition region which also provides the necessary level of refinement at the base of the wind. In the absence of our improvements, we show that poor spatial resolution near the sonic point of a hot, fast outflow leads to an underestimation of gas acceleration as the wind propagates. We explore the different mechanisms by which low and high specific energy winds can regulate the SFR of galaxies. In future work, we will demonstrate other aspects of the Arkenstone model.

  • The Anatomy of a Turbulent Radiative Mixing Layer: Insights from an Analytic Model with Turbulent Conduction and Viscosity

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Turbulent Radiative Mixing Layers (TRMLs) form at the interface of cold, dense gas and hot, diffuse gas in motion with each other. TRMLs are ubiquitous in and around galaxies on a variety of scales, including galactic winds and the circumgalactic medium. They host the intermediate temperature gases that are efficient in radiative cooling, thus play a crucial role in controlling the cold gas supply, phase structure, and spectral features of galaxies. In this work, we introduce a simple parameterization of the effective turbulent conductivity and viscosity that enables us to develop a simple and intuitive analytic 1.5 dimensional model for TRMLs. Our analytic model reproduces the mass flux, total cooling, and phase structure of 3D simulations of TRMLs at a fraction of the computational cost. It also reveals essential insights into the physics of TRMLs, particularly the importance of the viscous dissipation of relative kinetic energy in balancing radiative cooling. This dissipation takes place both in the intermediate temperature phase, which offsets the enthalpy flux from the hot phase, and in the cold phase, which enhances radiative cooling. Additionally, our model provides a fast and easy way of computing the column density and surface brightness of TRMLs, which can be directly linked to observations.

  • Active galactic nucleus jet feedback in hydrostatic halos

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Feedback driven by jets from active galactic nuclei is believed to be responsible for reducing cooling flows in cool-core galaxy clusters. We use simulations to model feedback from hydrodynamic jets in isolated halos. While the jet propagation converges only after the diameter of the jet is well resolved, reliable predictions about the effects these jets have on the cooling time distribution function only require resolutions sufficient to keep the jet-inflated cavities stable. Comparing different model variations, as well as an independent jet model using a different hydrodynamics code, we show that the dominant uncertainties are the choices of jet properties within a given model. Independent of implementation, we find that light, thermal jets with low momentum flux tend to delay the onset of a cooling flow more efficiently on a $50$ Myr timescale than heavy, kinetic jets. The delay of the cooling flow originates from a displacement and boost in entropy of the central gas. If the jet luminosity depends on accretion rate, collimated, light, hydrodynamic jets are able to reduce cooling flows in halos, without a need for jet precession or wide opening angles. Comparing the jet feedback with a `kinetic wind' implementation shows that equal amounts of star formation rate reduction can be achieved by different interactions with the halo gas: the jet has a larger effect on the hot halo gas while leaving the denser, star forming phase in place, while the wind acts more locally on the star forming phase, which manifests itself in different time-variability properties.

  • If dark matter is fuzzy, the first stars form in massive pancakes

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Fuzzy dark matter (FDM) is a proposed modification for the standard cold dark matter (CDM) model motivated by small-scale discrepancies in low-mass galaxies. Composed of ultra-light (mass $\sim 10^{-22}$ eV) axions with kpc-scale de Broglie wavelengths, this is one of a class of candidates that predicts that the first collapsed objects form in relatively massive dark matter halos. This implies that the formation history of the first stars and galaxies would be very different, potentially placing strong constraints on such models. Here we numerically simulate the formation of the first stars in an FDM cosmology, following the collapse in a representative volume all the way down to primordial protostar formation including a primordial non-equilibrium chemical network and cooling for the first time. We find two novel results: first, the large-scale collapse results in a very thin and flat gas "pancake"; second, despite the very different cosmology, this pancake fragments until it forms protostellar objects indistinguishable from those in CDM. Combined, these results indicate that the first generation of stars in this model are also likely to be massive and, because of the sheet morphology, do not self-regulate, resulting in a massive Pop III starburst. We estimate the total number of first stars forming in this extended structure to be $10^4$ over 20 Myr using a simple model to account for the ionizing feedback from the stars, and should be observable with JWST. These predictions provide a potential smoking gun signature of FDM and similar dark matter candidates.

  • Formation and evolution of young massive clusters in galaxy mergers: the SMUGGLE view

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Galaxy mergers are known to host abundant young massive cluster (YMC) populations, whose formation mechanism is still not well-understood. Here, we present a high-resolution galaxy merger simulation with explicit star formation and stellar feedback prescriptions to investigate how mergers affect the properties of the interstellar medium and YMCs. Compared with a controlled simulation of an isolated galaxy, the mass fraction of dense and high-pressure gas is much higher in mergers. Consequently, the mass function of both molecular clouds and YMCs becomes shallower and extends to higher masses. Moreover, cluster formation efficiency is significantly enhanced and correlates positively with the star formation rate surface density and gas pressure. We track the orbits of YMCs and investigate the time evolution of tidal fields during the course of the merger. At an early stage of the merger, the tidal field strength correlates positively with YMC mass, $\lambda_{\rm tid}\propto M^{0.71}$, which systematically affects the shape of the mass function and age distribution of the YMCs. At later times, most YMCs closely follow the orbits of their host galaxies, gradually sinking into the center of the merger remnant due to dynamical friction, and are quickly dissolved via efficient tidal disruption. Interestingly, YMCs formed during the first passage, mostly in tidal tails and bridges, are distributed over a wide range of galactocentric radii, greatly increasing their survivability because of the much weaker tidal field in the outskirts of the merger system. These YMCs are promising candidates for globular clusters that survive to the present day.

  • Self-regulation of black hole accretion via jets in early protogalaxies

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The early growth of black holes (BHs) in high-redshift galaxies is likely regulated by their feedback on the surrounding gas. While radiative feedback has been extensively studied, the role of mechanical feedback has received comparatively less scrutiny to date. Here we use high-resolution parsec-scale hydrodynamical simulations to study jet propagation and its effect on BH accretion onto 100 ${\rm M_\odot}$ BHs in the dense, low-metallicity gas expected in early protogalaxies. As the jet propagates, it shocks the surrounding gas and forms a jet cocoon. The cocoon consists of a rapidly-cooling cold phase at the interface with the background gas and an over-pressured subsonic phase of reverse shock-heated gas filling the cocoon interior. We systematically vary the background gas density and temperature, BH feedback efficiency, and the jet model. We found that the jet cocoon width roughly follows a scaling derived by assuming momentum conservation in the jet propagation direction, and energy conservation in the lateral directions. Depending on the assumed gas and jet properties, the cocoon either stays elongated out to a large radius or isotropizes before reaching the Bondi radius, forming a nearly spherical bubble. Lower jet velocities and higher background gas densities result in self-regulation to higher momentum fluxes and elongated cocoons. In all cases, the outward momentum flux of the cocoon balances the inward momentum flux of the inflowing gas near the Bondi radius, which ultimately regulates BH accretion. The larger the distance the jet cocoon reaches, the longer the variability timescale of the BH accretion rate. Overall, the average accretion rate always remains below the Bondi rate, and exceeds the Eddington rate only if the ambient medium is dense and cold, and/or the jet is weak. We derive the combination of jet and ambient gas parameters yielding super-Eddington growth.

  • Code Comparison in Galaxy Scale Simulations with Resolved Supernova Feedback:\\ Lagrangian vs. Eulerian Methods

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a suite of high-resolution simulations of an isolated dwarf galaxy using four different hydrodynamical codes: {\sc Gizmo}, {\sc Arepo}, {\sc Gadget}, and {\sc Ramses}. All codes adopt the same physical model which includes radiative cooling, photoelectric heating, star formation, and supernova (SN) feedback. Individual SN explosions are directly resolved without resorting to sub-grid models, eliminating one of the major uncertainties in cosmological simulations. We find reasonable agreement on the time-averaged star formation rates as well as the joint density-temperature distributions between all codes. However, the Lagrangian codes show significantly burstier star formation, larger supernova-driven bubbles, and stronger galactic outflows compared to the Eulerian code. This is caused by the behavior in the dense, collapsing gas clouds when the Jeans length becomes unresolved: gas in Lagrangian codes collapses to much higher densities than in Eulerian codes, as the latter is stabilized by the minimal cell size. Therefore, more of the gas cloud is converted to stars and SNe are much more clustered in the Lagrangian models, amplifying their dynamical impact. The differences between Lagrangian and Eulerian codes can be reduced by adopting a higher star formation efficiency in Eulerian codes, which significantly enhances SN clustering in the latter. Adopting a zero SN delay time reduces burstiness in all codes, resulting in vanishing outflows as SN clustering is suppressed.