您选择的条件: Chao Peng
  • Low-threshold nanolasers based on miniaturized bound states in the continuum

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: The pursuit of compact lasers with low-thresholds has imposed strict requirements on tight light confinements with minimized radiation losses. Bound states in the continuum (BICs) have been recently demonstrated as an effective mechanism to trap light along the out-of-plane direction, paving the way to low-threshold lasers. To date, most reported BIC lasers are still bulky due to the absence of in-plane light confinement. In this work, we combine BICs and photonic band gaps to realize three-dimensional (3D) light confinements, as referred to miniaturized (mini-) BICs. Together with 3D carrier confinements provided by quantum dots (QDs) as optical gain materials, we have realized highly-compact active BIC resonators with a record-high quality ($Q$) factor up to 32500, which enables single-mode continuous wave (CW) lasing with the lowest threshold of 80 W/cm$^{2}$ among the reported BIC lasers. In addidtion, our photon statistics measurements under both CW and pulsed excitations confirm the occurence of the phase transition from spontaneous emission to stimulated emission, further suggesting that conventional criteria of input-output and linewidth are not sufficient for claiming nanoscale lasing. Our work reveal a via path towards compact BIC lasers with ultra-low power consumption and potentially boost the applications in cavity quantum electrodynamics (QEDs), nonlinear optics and integrated photonics.

  • Slow light silicon modulator beyond 110 GHz bandwidth

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Silicon modulators are key components in silicon photonics to support the dense integration of electro-optic (EO) functional elements on a compact chip for various applications including high-speed data transmission, signal processing, and photonic computing. Despite numerous advances in promoting the operation speed of silicon modulators, a bandwidth ceiling of 67 GHz emerges in practices and becomes an obstacle to paving silicon photonics toward Tbps level data throughput on a single chip. Here, we theoretically propose and experimentally demonstrate a design strategy for silicon modulators by employing the slow light effect, which shatters the present bandwidth ceiling of silicon modulators and pushes its limit beyond 110 GHz in a small footprint. The proposed silicon modulator is built on a coupled-resonator optical waveguide (CROW) architecture, in which a set of Bragg gratings are appropriately cascaded to give rise to a slow light effect. By comprehensively balancing a series of merits including the group index, photon lifetime, electrical bandwidth, and losses, we found the modulators can benefit from the slow light for better modulation efficiency and compact size while remaining their bandwidth sufficiently high to support ultra-high-speed data transmission. Consequently, we realize a modulator with an EO bandwidth of 110 GHz in a length of 124 {\mu}m, and demonstrate a data rate beyond 110 Gbps by applying simple on-off keying modulation for a DSP-free operation. Our work proves that silicon modulators beyond 110 GHz are feasible, thus shedding light on the potentials of silicon photonics in ultra-high-bandwidth applications such as data communication, optical interconnection, and photonic machine learning.