按提交时间
按主题分类
按作者
按机构
您选择的条件: Kareem El-Badry
  • What Causes The Formation of Disks and End of Bursty Star Formation?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: As they grow, galaxies can transition from irregular/spheroidal with 'bursty' star formation histories (SFHs), to disky with smooth SFHs. But even in simulations, the direct physical cause of such transitions remains unclear. We therefore explore this in a large suite of numerical experiments re-running portions of cosmological simulations with widely varied physics, further validated with existing FIRE simulations. We show that gas supply, cooling/thermodynamics, star formation model, Toomre scale, galaxy dynamical times, and feedback properties do not have a direct causal effect on these transitions. Rather, both the formation of disks and cessation of bursty star formation are driven by the gravitational potential, but in different ways. Disk formation is promoted when the mass profile becomes sufficiently centrally-concentrated in shape (relative to circularization radii): we show that this provides a well-defined dynamical center, ceases to support the global 'breathing modes' which can persist indefinitely in less-concentrated profiles and efficiently destroy disks, promotes orbit mixing to form a coherent angular momentum, and stabilizes the disk. Smooth SF is promoted by the potential or escape velocity (not circular velocity) becoming sufficiently large at the radii of star formation that cool, mass-loaded (momentum-conserving) outflows are trapped/confined near the galaxy, as opposed to escaping after bursts. We discuss the detailed physics, how these conditions arise in cosmological contexts, their relation to other correlated phenomena (e.g. inner halo virialization, vertical disk 'settling'), and observations.

  • 15000 Ellipsoidal Binary Candidates in TESS: Orbital Periods, Binary Fraction, and Tertiary Companions

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a homogeneously-selected sample of 15779 candidate binary systems with main sequence primary stars and orbital periods shorter than 5 days. The targets were selected from TESS full-frame image lightcurves on the basis of their tidally-induced ellipsoidal modulation. Spectroscopic follow-up suggests a sample purity of $83 \pm 13$ per cent. Injection-recovery tests allow us to estimate our overall completeness as $28 \pm 3$ per cent with $P_\mathrm{orb} < 3$ days and to quantify our selection effects. We estimate that $39 \pm 4$ per cent of our sample are contact binary systems, and we disentangle the period distributions of the contact and detached binaries. We derive the orbital period distribution of the main sequence binary population at short orbital periods, finding a distribution continuous with the log-normal distribution previously found for solar-type stars at longer periods, but with a significant steepening at $P_\mathrm{orb} \lesssim 3$ days, and a pile-up of contact binaries at $P_\mathrm{orb} \approx 0.4$ days. Companions in the period range 1--5 days are found to be an order of magnitude more frequent around stars hotter than $\approx 6250 K$ (the Kraft break) when compared to cooler stars, suggesting that magnetic braking plays an important role in shaping the temperature and period distributions. We detect resolved tertiary companions to $9.0 \pm 0.2$ per cent of our binaries with a median separation of 3200 AU. The frequency of tertiary companions rises to $29 \pm 5$ per cent among the systems with the shortest ellipsoidal periods. This large binary sample with quantified selection effects will be a powerful resource for future studies of detached and contact binary systems with $P_\mathrm{orb} < 5$ days.

  • Gaia Spectroscopic Orbits Validated with LAMOST and GALAH Radial Velocities

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The recently published Gaia DR3 catalog of 181327 spectroscopic binaries (SB) includes the Keplerian elements of each orbit but not the measured radial velocities (RVs) and their epochs. Instead, the catalog lists a few parameters that characterize the robustness of each solution. In this work, we use two external sources to validate the orbits - 17563 LAMOST DR6 and 6018 GALAH DR3 stars with measured RVs that have Gaia-SB orbits. We compare the expected RVs, based on the Gaia orbits, with the LAMOST and GALAH measurements. Finding some orbits that are inconsistent with these measurements, we constructed a function that estimates the probability of each of the Gaia orbits to be correct, using the published robust parameters. We devise a clean but still very large Gaia SB1 sample of 91740 orbits. The sample differs from the parent sample by the absence of - physically unlikely and hence presumably spurious - short-period binaries with high eccentricity. The clean SB1 sample offers the prospect of thorough statistical studies of the binary population after carefully modeling of the remaining selection effects. At a first look, two possible features emerge from the clean sample - a paucity of short-period binaries with low-mass primaries, which might be a result of some observational bias, and a sub-sample of main-sequence binaries on circular orbits, probable evidence for circularization processes.

  • Public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We describe a public data release of the FIRE-2 cosmological zoom-in simulations of galaxy formation, available at http://flathub.flatironinstitute.org/fire, from the Feedback In Realistic Environments (FIRE) project. FIRE-2 simulations achieve parsec-scale resolution to explicitly model the multi-phase interstellar medium while implementing direct models for stellar evolution and feedback, including stellar winds, core-collapse and Ia supernovae, radiation pressure, photoionization, and photoelectric heating. We release complete snapshots from 3 suites of simulations. The first comprises 20 simulations that zoom in on 14 Milky Way-mass galaxies, 5 SMC/LMC-mass galaxies, and 4 lower-mass galaxies including 1 ultra-faint; we release 39 snapshots across z = 0 - 10. The second comprises 4 massive galaxies, with 19 snapshots across z = 1 - 10. Finally, a high-redshift suite comprises 22 simulations, with 11 snapshots across z = 5 - 10. Each simulation also includes dozens of resolved lower-mass (satellite) galaxies in its zoom-in region. Snapshots include all stored properties for all dark matter, gas, and star particles, including 11 elemental abundances for stars and gas, and formation times (ages) of star particles. We also release accompanying (sub)halo catalogs, which include galaxy properties and member star particles. For the simulations to z = 0, including all Milky Way-mass galaxies, we release the formation coordinates and an "ex-situ" flag for all star particles, pointers to track particles across snapshots, catalogs of stellar streams, and multipole basis expansions for the halo mass distributions. We describe publicly available python packages for reading and analyzing these simulations.

  • ET White Paper: To Find the First Earth 2.0

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We propose to develop a wide-field and ultra-high-precision photometric survey mission, temporarily named "Earth 2.0 (ET)". This mission is designed to measure, for the first time, the occurrence rate and the orbital distributions of Earth-sized planets. ET consists of seven 30cm telescopes, to be launched to the Earth-Sun's L2 point. Six of these are transit telescopes with a field of view of 500 square degrees. Staring in the direction that encompasses the original Kepler field for four continuous years, this monitoring will return tens of thousands of transiting planets, including the elusive Earth twins orbiting solar-type stars. The seventh telescope is a 30cm microlensing telescope that will monitor an area of 4 square degrees toward the galactic bulge. This, combined with simultaneous ground-based KMTNet observations, will measure masses for hundreds of long-period and free-floating planets. Together, the transit and the microlensing telescopes will revolutionize our understandings of terrestrial planets across a large swath of orbital distances and free space. In addition, the survey data will also facilitate studies in the fields of asteroseismology, Galactic archeology, time-domain sciences, and black holes in binaries.

  • Science with the Ultraviolet Explorer (UVEX)

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: UVEX is a proposed medium class Explorer mission designed to provide crucial missing capabilities that will address objectives central to a broad range of modern astrophysics. The UVEX design has two co-aligned wide-field imagers operating in the FUV and NUV and a powerful broadband medium resolution spectrometer. In its two-year baseline mission, UVEX will perform a multi-cadence synoptic all-sky survey 50/100 times deeper than GALEX in the NUV/FUV, cadenced surveys of the Large and Small Magellanic Clouds, rapid target of opportunity followup, as well as spectroscopic followup of samples of stars and galaxies. The science program is built around three pillars. First, UVEX will explore the low-mass, low-metallicity galaxy frontier through imaging and spectroscopic surveys that will probe key aspects of the evolution of galaxies by understanding how star formation and stellar evolution at low metallicities affect the growth and evolution of low-metallicity, low-mass galaxies in the local universe. Such galaxies contain half the mass in the local universe, and are analogs for the first galaxies, but observed at distances that make them accessible to detailed study. Second, UVEX will explore the dynamic universe through time-domain surveys and prompt spectroscopic followup capability will probe the environments, energetics, and emission processes in the early aftermaths of gravitational wave-discovered compact object mergers, discover hot, fast UV transients, and diagnose the early stages of stellar explosions. Finally, UVEX will become a key community resource by leaving a large all-sky legacy data set, enabling a wide range of scientific studies and filling a gap in the new generation of wide-field, sensitive optical and infrared surveys provided by the Rubin, Euclid, and Roman observatories. This paper discusses the scientific potential of UVEX, and the broad scientific program.