您选择的条件: John M. Carpenter
  • The Architecture of the V892 Tau System: the Binary and its Circumbinary Disk

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present high resolution millimeter continuum and CO line observations for the circumbinary disk around V892 Tau to constrain the stellar and disk properties. The total mass of the two near-equal-mass A stars is estimated to be $6.0\pm0.2\,M_{\odot}$ based on our models of the Keplerian-dominated gas disk rotation. The detection of strong ionized gas emission associated with the two stars at 8 mm, when combined with previous astrometric measurements in the near-infrared, provides an updated view of the binary orbit with $a=7.1\pm0.1$ au, $e=0.27\pm0.1$, and $P=7.7\pm0.2$ yr, which is about half of a previously reported orbital period. The binary orbital plane is proposed to be near coplanar to the circumbinary disk plane (with a mutual inclination of only $\Delta=8\pm4.2$ deg; another solution with $\Delta=113$ deg is less likely given the short re-alignment timescale). An asymmetric dust disk ring peaking at a radius of 0.''2 is detected at 1.3 mm and its fainter counterparts are also detected at the longer 8 and 9.8 mm. The CO gas disk, though dominated by Keplerian rotation, presents a mild inner and outer disk misalignment, such that the inner disk to the SW and outer disk to the NE appear brighter than their counterparts at the opposite disk sides. The radial extension of the disk, its asymmetric dust ring, and the presence of a disk warp could all be explained by the interaction between the eccentric binary and the circumbinary disk, which we assume were formed with non-zero mutual inclination. Some tentatively detected gas spirals in the outer disk are likely produced by interactions with the low mass tertiary component located 4'' to the northeast. Our analyses demonstrate the promising usage of V892 Tau as an excellent benchmark system to study the details of binary--disk interactions.

  • A High-resolution Optical Survey of Upper Sco: Evidence for Coevolution of Accretion and Disk Winds

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetohydrodynamic (MHD) and photoevaporative winds are thought to play an important role in the evolution and dispersal of planet-forming disks. Here, we analyze high-resolution ($\Delta v \sim$ 7 kms$^{-1}$) optical spectra from a sample of 115 T Tauri stars in the $\sim 5-10$ Myr Upper Sco association and focus on the [O I]$\lambda$6300 and H$\alpha$ lines to trace disk winds and accretion, respectively. Our sample covers a large range in spectral type and we divide it into Warm (G0-M3) and Cool (later than M3) to facilitate comparison with younger regions. We detect the [O I]$\lambda$6300 line in 45 out of 87 upper sco sources with protoplanetary disks and 32 out of 45 are accreting based on H$\alpha$ profiles and equivalent widths. All [O I] $\lambda$6300 Upper Sco profiles have a low-velocity (centroid $< -30$ kms$^{-1}$, LVC) emission and most (36/45) can be fit by a single Gaussian (SC). The SC distribution of centroid velocities and FWHMs is consistent with MHD disk winds. We also find that the Upper Sco sample follows the same accretion luminosity$-$LVC [O I]$\lambda$6300 luminosity relation and the same anti-correlation between SC FWHM and WISE W3-W4 spectral index as the younger samples. These results indicate that accretion and disk winds coevolve and that, as inner disks clear out, wind emission arises further away from the star. Finally, our large spectral range coverage reveals that Cool stars have larger FWHMs normalized by stellar mass than Warm stars indicating that [O I]$\lambda$6300 emission arises closer in towards lower mass/lower luminosity stars.

  • A High-resolution Optical Survey of Upper Sco: Evidence for Coevolution of Accretion and Disk Winds

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetohydrodynamic (MHD) and photoevaporative winds are thought to play an important role in the evolution and dispersal of planet-forming disks. Here, we analyze high-resolution ($\Delta v \sim$ 7 kms$^{-1}$) optical spectra from a sample of 115 T Tauri stars in the $\sim 5-10$ Myr Upper Sco association and focus on the [O I]$\lambda$6300 and H$\alpha$ lines to trace disk winds and accretion, respectively. Our sample covers a large range in spectral type and we divide it into Warm (G0-M3) and Cool (later than M3) to facilitate comparison with younger regions. We detect the [O I]$\lambda$6300 line in 45 out of 87 upper sco sources with protoplanetary disks and 32 out of 45 are accreting based on H$\alpha$ profiles and equivalent widths. All [O I] $\lambda$6300 Upper Sco profiles have a low-velocity (centroid $< -30$ kms$^{-1}$, LVC) emission and most (36/45) can be fit by a single Gaussian (SC). The SC distribution of centroid velocities and FWHMs is consistent with MHD disk winds. We also find that the Upper Sco sample follows the same accretion luminosity$-$LVC [O I]$\lambda$6300 luminosity relation and the same anti-correlation between SC FWHM and WISE W3-W4 spectral index as the younger samples. These results indicate that accretion and disk winds coevolve and that, as inner disks clear out, wind emission arises further away from the star. Finally, our large spectral range coverage reveals that Cool stars have larger FWHMs normalized by stellar mass than Warm stars indicating that [O I]$\lambda$6300 emission arises closer in towards lower mass/lower luminosity stars.