您选择的条件: Ming Zhong
  • Machine Learning for Discovering Effective Interaction Kernels between Celestial Bodies from Ephemerides

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Building accurate and predictive models of the underlying mechanisms of celestial motion has inspired fundamental developments in theoretical physics. Candidate theories seek to explain observations and predict future positions of planets, stars, and other astronomical bodies as faithfully as possible. We use a data-driven learning approach, extending that developed in Lu et al. ($2019$) and extended in Zhong et al. ($2020$), to a derive stable and accurate model for the motion of celestial bodies in our Solar System. Our model is based on a collective dynamics framework, and is learned from the NASA Jet Propulsion Lab's development ephemerides. By modeling the major astronomical bodies in the Solar System as pairwise interacting agents, our learned model generate extremely accurate dynamics that preserve not only intrinsic geometric properties of the orbits, but also highly sensitive features of the dynamics, such as perihelion precession rates. Our learned model can provide a unified explanation to the observation data, especially in terms of reproducing the perihelion precession of Mars, Mercury, and the Moon. Moreover, Our model outperforms Newton's Law of Universal Gravitation in all cases and performs similarly to, and exceeds on the Moon, the Einstein-Infeld-Hoffman equations derived from Einstein's theory of general relativity.

  • Spontaneous symmetry breaking and ghost states supported by the fractional nonlinear Schr\"odinger equation with focusing saturable nonlinearity and PT-symmetric potential

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: We report a novel spontaneous symmetry breaking phenomenon and ghost states existed in the framework of the fractional nonlinear Schr\"odinger (FNLS) equation with focusing saturable nonlinearity and PT-symmetric potential. The continuous asymmetric soliton branch bifurcates from the fundamental symmetric one as the power exceeds some critical value. Intriguingly, the symmetry of fundamental solitons is broken into two branches of asymmetry solitons (alias ghost states) with complex conjugate propagation constants, which is solely in fractional media. Besides, the dipole (antisymmetry) and tripole solitons are also studied numerically. Moreover, we analyze the influences of fractional L\'evy index and saturable nonlinear parameters on the symmetry breaking of solitons in detail. And the stability of fundamental soliton, asymmetric, dipole and tripole solitons are explored via the linear stability analysis and direct propagations. Moreover, we explore the elastic/semi-elastic collision phenomena between symmetric and asymmetric solitons. Meanwhile, we find the stable excitations from the fractional diffraction with saturation nonlinearity to integer-order diffraction with Kerr nonlinearity via the adiabatic excitations of parameters. These results will provide some theoretical basis for the study of spontaneous symmetry breaking phenomena and related physical experiments in the fractional media with PT-symmetric potentials.