您选择的条件: Jian-Ping Yuan
  • Detection of 16 small glitches in 9 pulsars

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Timing observations from the Nanshan 26-m radio telescope for nine pulsars between 2000 and 2014 have been used to search for glitches. The data span for nine pulsars ranges from 11.6 to 14.2 years. From the total of 114 yr of pulsar rotational history, 16 new glitches were identified in 9 pulsars. Glitch parameters were measured by fitting the timing residuals data. All 16 glitches have a small fractional size. Six new glitches have been detected in PSR J1833-0827, making it another frequent glitching pulsar. Some of the 16 glitches may experience exponential or linear recovery, but it is unlikely for us to make further analyses with the large gap in the data set. All the glitch rates obtained from Nanshan are higher than that from Jodrell Bank Observatory. The small glitch size and high glitch rate could possibly attribute to the high observation cadence.

  • A Strange Star Scenario for the Formation of Eccentric Millisecond Pulsar PSR J1946+3417

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: PSR J$1946+3417$ is a millisecond pulsar (MSP) with a spin period $P\simeq3.17\rm~ms$. Harbored in a binary with an orbital period $P_{\rm b}\simeq27$ days, the MSP is accompanied by a white dwarf (WD). The masses of the MSP and the WD were determined to be $1.83\rm~M_\odot$ and $0.266\rm~M_\odot$, respectively. Specially, its orbital eccentricity is $e\simeq0.134$, which is challenging the recycling model of MSPs. Assuming that the neutron star in a binary may collapse to a strange star when its mass reaches a critical limit, we propose a phase transition (PT) scenario to account for the origin of the system. The sudden mass loss and the kick induced by asymmetric collapse during the PT may result in the orbital eccentricity. If the PT event takes place after the mass transfer ceases, the eccentric orbit can not be re-circularized in the Hubble time. Aiming at the masses of both components, we simulate the evolution of the progenitor of PSR J$1946+3417$ via \texttt{MESA}. The simulations show that a NS / main sequence star binary with initial masses of $1.4+1.6\rm~M_\odot$ in an initial orbit of 2.59 days will evolve into a binary consisting of a $2.0\rm~M_\odot$ MSP and a $0.27\rm~M_\odot$ WD in an orbit of $\sim21.5$ days. Assuming that the gravitational mass loss fraction during PT is $10\%$, we simulate the effect of PT via the kick program of \texttt{BSE} with a velocity of $\sigma_{\rm PT}=60~{\rm km~s}^{-1}$. The results show that the PT scenario can reproduce the observed orbital period and eccentricity with higher probability then other values.