您选择的条件: Ting Li
  • Dynamic Property and Magnetic Nonpotentiality of Two Types of Confined Solar Flares

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We analyze 152 large confined flares (GOES class $\geq$M1.0 and $\leq$$45^{\circ}$ from disk center) during 2010$-$2019, and classify them into two types according to the criterion taken from the work of Li et al. (2019). "Type I" flares are characterized by slipping motions of flare loops and ribbons and a stable filament underlying the flare loops. "Type II" flares are associated with the failed eruptions of the filaments, which can be explained by the classical 2D flare model. A total of 59 flares are "Type I" flares (about 40\%) and 93 events are "Type II" flares (about 60\%). There are significant differences in distributions of the total unsigned magnetic flux ($\Phi$$_\mathrm{AR}$) of active regions (ARs) producing the two types of confined flares, with "Type I" confined flares from ARs with a larger $\Phi$$_{AR}$ than "Type II". We calculate the mean shear angle $\Psi$$_\mathrm{HFED}$ within the core of an AR prior to the flare onset, and find that it is slightly smaller for "Type I" flares than that for "Type II" events. The relative non-potentiality parameter $\Psi$$_\mathrm{HFED}$/$\Phi$$_\mathrm{AR}$ has the best performance in distinguishing the two types of flares. About 73\% of "Type I" confined flares have $\Psi$$_\mathrm{HFED}$/$\Phi$$_\mathrm{AR}$$<$1.0$\times$$10^{-21}$ degree Mx$^{-1}$, and about 66\% of "Type II" confined events have $\Psi$$_\mathrm{HFED}$/$\Phi$$_\mathrm{AR}$$\geq$1.0$\times$$10^{-21}$ degree Mx$^{-1}$. We suggest that "Type I" confined flares cannot be explained by the standard flare model in 2D/3D, and the occurrence of multiple slipping magnetic reconnections within the complex magnetic systems probably leads to the observed flare.

  • Three-dimensional magnetic reconnection in astrophysical plasmas

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic reconnection is a fundamental process in a laboratory, magnetospheric, solar and astrophysical plasma, whereby magnetic energy is converted into heat, bulk kinetic energy and fast particle energy. Its nature in two dimensions is much better understood than in three dimensions (3D), where its character is completely different and has many diverse aspects that are currently being explored. Here we focus on the magnetohydrodynamics of 3D reconnection in the plasma environment of the solar system, especially solar flares. The theory of reconnection at null points, separators and quasi-separators is described, together with accounts of numerical simulations and observations of these three types of reconnection. The distinction between separator and quasi-separator reconnection is a theoretical one that is unimportant for the observations of energy release. A new paradigm for solar flares, in which 3D reconnection plays a central role, is proposed.

  • Faint AGNs Favor Unexpectedly Long Inter-band Time Lags

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Inconsistent conclusions are obtained from recent active galactic nuclei (AGNs) accretion disk inter-band time-lag measurements. While some works show that the measured time lags are significantly larger (by a factor of $\sim 3$) than the theoretical predictions of the Shakura \& Sunyaev disk (SSD) model, others find that the time-lag measurements are consistent with (or only slightly larger than) that of the SSD model. These conflicting observational results might be symptoms of our poor understanding of AGN accretion physics. Here we show that sources with larger-than-expected time lags tend to be less-luminous AGNs. Such a dependence is unexpected if the inter-band time lags are attributed to the light-travel-time delay of the illuminating variable X-ray photons to the static SSD. If, instead, the measured inter-band lags are related not only to the static SSD but also to the outer broad emission-line regions (BLRs; e.g., the blended broad emission lines and/or diffuse continua), our result indicates that the contribution of the non-disk BLR to the observed UV/optical continuum decreases with increasing luminosity ($L$), i.e., an anti-correlation resembling the well-known Baldwin effect. Alternatively, we argue that the observed dependence might be a result of coherent disk thermal fluctuations as the relevant thermal timescale, $\tau_{\mathrm{TH}}\propto L^{0.5}$. With future accurate measurements of inter-band time lags, the above two scenarios can be distinguished by inspecting the dependence of inter-band time lags upon either the BLR components in the variable spectra or the timescales.

  • A New Magnetic Parameter of Active Regions Distinguishing Large Eruptive and Confined Solar Flares

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With the aim of investigating how the magnetic field in solar active regions (ARs) controls flare activity, i.e., whether a confined or eruptive flare occurs, we analyze 106 flares of Geostationary Operational Environmental Satellite (GOES) class $\geq$M1.0 during 2010$-$2019. We calculate mean characteristic twist parameters $\alpha$$_{FPIL}$ within the "flaring polarity inversion line" region and $\alpha$$_\mathrm{HFED}$ within the area of high photospheric magnetic free energy density, which both provide measures of the nonpotentiality of AR core region. Magnetic twist is thought to be related to the driving force of electric current-driven instabilities, such as the helical kink instability. We also calculate total unsigned magnetic flux ($\Phi$$_\mathrm{AR}$) of ARs producing the flare, which describes the strength of the background field confinement. By considering both the constraining effect of background magnetic fields and the magnetic non-potentiality of ARs, we propose a new parameter $\alpha$/$\Phi$$_\mathrm{AR}$ to measure the probability for a large flare to be associated with a coronal mass ejection (CME). We find that in about 90\% of eruptive flares, $\alpha$$_\mathrm{FPIL}$/$\Phi$$_\mathrm{AR}$ and $\alpha$$_\mathrm{HFED}$/$\Phi$$_\mathrm{AR}$ are beyond critical values (2.2$\times$$10^{-24}$ and 3.2$\times$$10^{-24}$ Mm$^{-1}$ Mx$^{-1}$), whereas they are less than critical values in $\sim$ 80\% of confined flares. This indicates that the new parameter $\alpha$/$\Phi$$_\mathrm{AR}$ is well able to distinguish eruptive flares from confined flares. Our investigation suggests that the relative measure of magnetic nonpotentiality within the AR core over the restriction of the background field largely controls the capability of ARs to produce eruptive flares.

  • Reconstructing 3D Magnetic Topology of On-disk Prominence Bubbles from Stereoscopic Observations

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Bubbles, the semi-circular voids below quiescent prominences (filaments), have been extensively investigated in the past decade. However, hitherto the magnetic nature of bubbles cannot be verified due to the lack of on-disk photospheric magnetic field observations. Here for the first time, we find and investigate an on-disk prominence bubble around a filament barb on 2019 March 18 based on stereoscopic observations from NVST, SDO, and STEREO-A. In high-resolution NVST H$\alpha$ images, this bubble has a sharp arch-like boundary and a projected width of $\thicksim$26 Mm. Combining SDO and STEREO-A images, we further reconstruct 3D structure of the bubble boundary, whose maximum height is $\thicksim$15.6 Mm. The squashing factor Q map deduced from extrapolated 3D magnetic fields around the bubble depicts a distinct arch-shaped interface with a height of $\thicksim$11 Mm, which agrees well with the reconstructed 3D structure of the observed bubble boundary. Under the interface lies a set of magnetic loops, which is rooted on a surrounding photospheric magnetic patch. To be more persuasive, another on-disk bubble on 2019 June 10 is presented as a supplement. According to these results obtained from on-disk bubble observations, we suggest that the bubble boundary corresponds to the interface between the prominence dips (barb) and the underlying magnetic loops rooted nearby. It is thus reasonable to speculate that the bubble can form around a filament barb below which there is a photospheric magnetic patch.

  • Magnetic Flux and Magnetic Non-potentiality of Active Regions in Eruptive and Confined Solar Flares

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: With the aim of understanding how the magnetic properties of active regions (ARs) control the eruptive character of solar flares, we analyze 719 flares of Geostationary Operational Environmental Satellite (GOES) class $\geq$C5.0 during 2010$-$2019. We carry out the first statistical study that investigates the flare-coronal mass ejections (CMEs) association rate as function of the flare intensity and the AR characteristics that produces the flare, in terms of its total unsigned magnetic flux ($\Phi$$_{AR}$). Our results show that the slope of the flare-CME association rate with flare intensity reveals a steep monotonic decrease with $\Phi$$_{AR}$. This means that flares of the same GOES class but originating from an AR of larger $\Phi$$_{AR}$, are much more likely confined. Based on an AR flux as high as 1.0$\times$$10^{24}$ Mx for solar-type stars, we estimate that the CME association rate in X100-class ``superflares" is no more than 50\%. For a sample of 132 flares $\geq$M2.0 class, we measure three non-potential parameters including the length of steep gradient polarity inversion line (L$_{SGPIL}$), the total photospheric free magnetic energy (E$_{free}$) and the area with large shear angle (A$_{\Psi}$). We find that confined flares tend to have larger values of L$_{SGPIL}$, E$_{free}$ and A$_{\Psi}$ compared to eruptive flares. Each non-potential parameter shows a moderate positive correlation with $\Phi$$_{AR}$. Our results imply that $\Phi$$_{AR}$ is a decisive quantity describing the eruptive character of a flare, as it provides a global parameter relating to the strength of the background field confinement.

  • Various Activities above Sunspot Light Bridges in IRIS Observations: Classification and Comparison

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Light bridges (LBs) are among the most striking sub-structures in sunspots, where various activities have been revealed by recent high-resolution observations from the Interface Region Imaging Spectrograph (IRIS). According to the variety of physical properties, we classified these activities into four distinct categories: transient brightening (TB), intermittent jet (IJ), type-I light wall (LW-I), and type-II light wall (LW-II). In IRIS 1400/1330 {\AA} observations, TBs are characterized by abrupt emission enhancements, and IJs appear as collimated plasma ejections with a width of 1-2 Mm at some LB sites. Most observed TBs are associated with IJs and show superpositions of some chromosphere absorption lines on enhanced and broadened wings of C II and Si IV lines, which could be driven by intermittent magnetic reconnection in the lower atmosphere. LW-I and LW-II are wall-shaped structures with bright fronts above the whole LB. An LW-I has a continuous oscillating front with a typical height of several Mm and an almost stationary period of 4-5 minutes. On the contrary, an LW-II has a indented front with a height of over 10 Mm, which has no stable period and is accompanied by recurrent TBs in the entire LB. These results support that LW-IIs are driven by frequent reconnection occurring along the whole LB due to large-scale magnetic flux emergence or intrusion, rather than the leakage of waves producing LW-Is. Our observations reveal a highly dynamical scenario of activities above LBs driven by different basic physical processes, including magneto-convection, magnetic reconnection, and wave leakage.

  • Artificial gauge field enabled low-crosstalk, broadband, half-wavelength-pitched waveguide arrays

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Dense waveguide arrays with half-wavelength-pitch, low-crosstalk, broadband, and flexible routing capability are essential for integrated photonics. However, achieving such performance is challenging due to the relatively weaker confinement of dielectric waveguides and the increased interactions among densely packed waveguides. Here, leveraging the artificial gauge field mechanism, we demonstrate half-wavelength-pitched dense waveguide arrays, consisting of 64 waveguides, in silicon with -30dB crosstalk suppression from 1480nm to 1550nm. The waveguide array features negligible insertion loss for 90-degree bending. Our approach enables flexibly routing a large-scale dense waveguide array that significantly reduces on-chip estate, leading to a high-density photonic integrated circuit, and may open up opportunities for important device performance improvement, such as half-wavelength-pitch OPA and ultra-dense space-division multiplexing