Your conditions: 乔彦强
  • MICROSTRUCTURE AND OXIDATION BEHAVIOR OF ZrSi2-NbSi2 MULTILAYER COATINGS ON AN Nb-Ti-Si-Cr BASE ULTRAHIGH TEMPERATURE ALLOY

    Subjects: Materials Science >> Materials Science (General) submitted time 2023-03-19 Cooperative journals: 《金属学报》

    Abstract: The rather poor oxidation resistance of Nb-Si base ultrahigh temperature alloys has seriously limited their practical applications at high temperatures. Niobium disilicide coatings, especially those modified by reactive elements (RE) such as Zr and Y, have been shown to possess good anti-oxidation properties at high temperatures due to the formation of a protective RE-containing SiO2 scale. Halide activated pack cementation (HAPC) is one of the most widely used techniques for preparing protective coatings on Nb-Si base ultrahigh temperature alloys, because compact coatings and metallurgical substrate/coating bonds can be obtained with using this technique. However, only a very limited amount of Zr and Y can be diffused into the coatings by a single co-deposition pack cementation process as a result of their large atomic radii and high melting points. To solve this problem, a method such as magnetron sputtering, which can be used for producing overlay coatings with different composition ratios of coating elements, seems to be feasible. In the present study, ZrSi2-NbSi2 multilayer coatings were prepared on an Nb-Ti-Si-Cr base ultrahigh temperature alloy by first magnetron sputtering 2 μm thick Zr-film, and then Si-Y co-deposition at respectively 1150, 1250 and 1350 ℃ by HAPC process. The structures and formation processes, as well as the static oxidation behavior of the coatings were investigated. The results show that the coating prepared at respectively 1150, 1250 and 1350 ℃ had similar structures, consisting of a ZrSi2 outer layer, a (Nb, X)Si2 (X=Ti, Cr, Zr and Hf) middle layer and a (Ti, Nb)5Si4 inner layer. However, the higher co-deposition temperature (1350 ℃) could cause cracks at the interfaces between the constituent layers of the coatings. The formation of the coating was dominated by inward diffusion of Si, accompanied with a certain degree of outward diffusion of Nb, Ti and Cr from the base alloy during the second Si-Y co-deposition process. The oxidation tests demonstrated that the ZrSi2-NbSi2 multilayer coating possessed excellent oxidation resistance. After oxidation, a dense scale consisting of SiO2, TiO2, ZrSiO4 and Cr2O3 formed on the coating, which can protect the base alloy from oxidation at least for 100 h at 1250 ℃ in air.

  • EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS

    Subjects: Materials Science >> Materials Science (General) submitted time 2023-03-19 Cooperative journals: 《金属学报》

    Abstract:Nb- Ti- Si base in situ composites which consist of Nb solid solution (Nbss) and silicides (a-Nb5Si3, b-Nb5Si3, g-Nb5Si3 and/or Nb3Si) phases, have shown great potential as alternative materials to Ni-based superalloys due to their high melting points (beyond 1700 ℃ ), good formability, low density (6.6~7.2 g/cm3) and high strength. However, a major hindrance to the applications of these alloys at elevated temperatures is their poor oxidation resistance. Alloying is an effective method to improve the integrated properties of the alloys, especially for the oxidation resistance. Up to now, many beneficial elements such as Ti, Al, Cr and Sn have been employed to ameliorate their oxidation resistance. Nevertheless, there is no systematic and comprehensive investigation on the effect of Zr contents on the microstructure and oxidation behavior of the alloys based on Nb-Ti-Si system. The aim of this work is to clarify the effects of Zr contents on phase selection, microstructure and high temperature oxidation resistance of Nb-Ti-Si based alloys in detail. The constituent phases, microstructure and composition of the alloys under as- cast state and after oxidation were investigated by OM, XRD, SEM and EDS. Thus, six Nb-Ti- Si base ultrahigh-temperature alloys with compositions of Nb-22Ti-15Si-5Cr-3Hf-3Al-xZr (x=0, 0.5, 1, 2, 4, 8, atomic fraction, %) were prepared by vacuum non-consumable arc-melting. The results show that the alloys with different Zr contents are mainly composed of Nbss and g-(Nb, X)5Si3 (X represents Ti, Hf, Cr and Zr). However, the addition of Zr has an obvious affect on the microstructure of Nb-Ti-Si base alloys. Both the sizes and amounts of primary g- (Nb, X)5Si3 increase with increase in Zr contents. Alloys with different Zr contents were oxidized at 1250 ℃ for 1~50 h, respectively. It is found that both adhesion and compactness of the scales are improved effectively by increase in Zr contents. The scales of alloys with higher Zr contents (x=4 and 8) after oxidation for 50 h show an obvious layered structure: the outmost layer is only composed of TiO2, the middle layer mainly consists of ZrO2, TiNb2O7 and TiO2, and the inner layer is mainly comprised of Si-rich oxides. The mass gain per unit area and the thickness of the scale after oxidation decrease with increase in Zr contents in the alloys, indicating that the addition of Zr can improve the oxidation resistance of the alloys significantly.

  • High Temperature Oxidation Resistance of Silicide Coatings on Nb/NbCr2 Alloy

    Subjects: Materials Science >> Materials Science (General) submitted time 2023-03-18 Cooperative journals: 《材料研究学报》

    Abstract: Silicide coatings on Nb/NbCr2 alloy were prepared by pack cementation method. The oxidation behavior of the bare- and coated-alloy was examined by isothermal test at 1250 ℃ in static air. The results show that the silicide coatings are composed of (Nb, Cr)Si2 and (Cr, Nb)Si2 phases. There exist a transitional layer of (Nb, Cr)5Si3 in between the main coating and substrate. The coating growth kinetics at 1250℃ fits to parabolic law. The oxidation of Nb/NbCr2 alloy resulted in alternate layers of Nb2O5 and CrNbO4 with porous structure, which was wrinkling even spalling off after oxidation. The scale formed on the silicide coating after oxidation at 1250℃ was mainly composed of SiO2 and CrNbO4. The scale was relatively dense and had a good bond with the residual coating, thus showing an excellent oxidation resistance.