您选择的条件: ZHAO Chuanyan
  • Modified non-rectangular hyperbola equation with plant height for photosynthetic light-response curves of Potentilla anserina and Elymus nutans at various growth phases in the Heihe River Basin, Northwest China

    分类: 环境科学技术及资源科学技术 >> 环境科学技术基础学科 提交时间: 2019-10-26 合作期刊: 《干旱区科学》

    摘要: The non-rectangular hyperbola (NRH) equation is the most popular method that plots the photosynthetic light-response (PLR) curve and helps to identify plant photosynthetic capability. However, the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development. Recently, plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation, but plant height (H), an important parameter in plant growth phases, is not taken into account. In this study, H was incorporated into the NRH equation to establish the modified NRH equation, which could be used to estimate photosynthetic capability of herbage at different growth phases. To explore photosynthetic capability of herbage, we selected the dominant herbage species Potentilla anserina L. and Elymus nutans Griseb. in the Heihe River Basin, Northwest China as the research materials. Totally, twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016. Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H. The modified NRH equation, which is established by introducing H and an H-based adjustment factor into the NRH equation, described better the PLR curves of P. anserina and E. nutans than the original ones. The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.

  • Actual evapotranspiration of subalpine meadows in the Qilian Mountains, Northwest China

    分类: 地球科学 >> 大气科学 提交时间: 2019-06-20 合作期刊: 《干旱区科学》

    摘要: As a main component in water balance, evapotranspiration (ET) is of great importance for water saving, especially in arid and semi-arid areas. In this study, the FAO (Food and Agriculture Organization) Penman-Monteith model was used to estimate the magnitude and temporal dynamics of reference evapotranspiration (ET0) in 2014 in subalpine meadows of the Qilian Mountains, Northwest China. Meanwhile, actual ET (ETc) was also investigated by the eddy covariance (EC) system. Results indicated that ETc estimated by the EC System was 583 mm, lower than ET0 (923 mm) estimated by the FAO Penman-Monteith model in 2014. Moreover, ET0 began to increase in March and reached the peak value in August and then declined in September, however, ETc began to increase from April and reached the peak value in July, and then declined in August. Total ETc and ET0 values during the growing season (from May to September) were 441 and 666 mm, respectively, which accounted for 75.73% of annual cumulative ETc and 72.34% of annual cumulative ET0, respectively. A crop coefficient (kc) was also estimated for calculating the ETc, and average value of kc during the growing season was 0.81 (ranging from 0.45 to 1.16). Air temperature (Ta), wind speed (u), net radiation (Rn) and soil temperature (Ts) at the depth of 5 cm and aboveground biomass were critical factors for affecting kc, furthermore, a daily empirical kc equation including these main driving factors was developed. Our result demonstrated that the ETc value estimated by the data of kc and ET0 was validated and consistent with the growing season data in 2015 and 2016.