按提交时间
按主题分类
按作者
按机构
  • Does the non-force-freeness matter for the extrapolation of solar magnetic field?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic field extrapolation is a fundamental tool to reconstruct the three-dimensional solar coronal magnetic field. However, the prevalently used force-free field model might not be applicable in the lower atmosphere, where plasma \b{eta} is greater than 1. In this work, we perform extrapolation in active region 12158, based on an updated magnetohydrostatic (MHS) method. By comparing the results with those from the force-free field method of Current-Field Iteration in Spherical Coordinates (CFITS), we find that the overall properties, which are characterized by the magnetic free energy and helicity, are roughly the same after volume integral. The major differences lie in the magnetic configuration and the twist number of magnetic flux rope (MFR). A coherent MFR with twist around 1 is reproduced from CFITS. In another manner, two sets of MFR, which are highly twisted and slightly coupled, are derived by the MHS method. The latter one is better constrained by the high-resolution observations, such as the filament fibrils, pre-eruptive braiding characteristics and the eruptive double-J shaped hot channel. Overall, our work shows the MHS method is more promising to reproduce the magnetic fine structures that can well match the observations not only in the chromosphere but also in the corona. This initiates the necessity of reconsidering the simplification of low atmosphere for currently widely used nonlinear force-free extrapolation method, since such assumption will not only omit the magnetic structures at low atmosphere but also affect those obtained in the corona, and therefore bringing in ambiguity in interpreting the solar eruption.

  • Does the non-force-freeness matter for the extrapolation of solar magnetic field?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Magnetic field extrapolation is a fundamental tool to reconstruct the three-dimensional solar coronal magnetic field. However, the prevalently used force-free field model might not be applicable in the lower atmosphere, where plasma \b{eta} is greater than 1. In this work, we perform extrapolation in active region 12158, based on an updated magnetohydrostatic (MHS) method. By comparing the results with those from the force-free field method of Current-Field Iteration in Spherical Coordinates (CFITS), we find that the overall properties, which are characterized by the magnetic free energy and helicity, are roughly the same after volume integral. The major differences lie in the magnetic configuration and the twist number of magnetic flux rope (MFR). A coherent MFR with twist around 1 is reproduced from CFITS. In another manner, two sets of MFR, which are highly twisted and slightly coupled, are derived by the MHS method. The latter one is better constrained by the high-resolution observations, such as the filament fibrils, pre-eruptive braiding characteristics and the eruptive double-J shaped hot channel. Overall, our work shows the MHS method is more promising to reproduce the magnetic fine structures that can well match the observations not only in the chromosphere but also in the corona. This initiates the necessity of reconsidering the simplification of low atmosphere for currently widely used nonlinear force-free extrapolation method, since such assumption will not only omit the magnetic structures at low atmosphere but also affect those obtained in the corona, and therefore bringing in ambiguity in interpreting the solar eruption.

  • Electron irradiation effects of radiochromic PCDA vesicle gel dosimeters

    分类: 核科学技术 >> 核材料与工艺技术 提交时间: 2023-06-18 合作期刊: 《Nuclear Science and Techniques》

    摘要: The gel dosimeter has the uniquely capacity in recording radiation dose distribution in three dimensions (3D), which has the specific advantages in dosimetry measurements where steep dose gradients exist. In this study, a novel radiochromic gel dosimeter was developed by dispersing nanovesicles self-assembled by 10, 12-pentacosadiynoic acid (PCDA) into the tissue equivalence gel matrix. The characteristics of radiochromic PCDA vesicle gel dosimeters were evaluated. Results indicate that these radiochromic gel dosimeters have good linear response to 1.7 MeV electron beam irradiation in the dose range of 0.326.36 kGy. In addition, the radiochromic gel dosimeters overcome the limitations of the existing gel dosimeters such as diffusion effect, post-radiation effect, and poor forming ability. Hence, the radiochromic PCDA vesicle gel dosimeters developed could be generally applied to 3D dose distribution measurement with optical readout.

  • PIK3R1 negatively regulates the epithelial-mesenchymal transition and stem-like phenotype of renal cancer cells through the AKT/GSK3 beta/CTNNB1 signaling pathway

    分类: 生物学 >> 生物物理学 提交时间: 2016-05-12

    摘要: The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway has been identified as an important pathway in renal cell carcinoma (RCC). We have reported a nonsense mutation in PIK3R1, which encodes the regulatory subunit of PI3K, in a metastatic RCC (mRCC), while the mutation was absent in the corresponding primary RCC (pRCC). To identify the function of PIK3R1 in RCC, we examined its expression in normal kidney, pRCC and mRCC by immunohistochemistry and real-time polymerase chain reaction. The expression of PIK3R1 significantly decreased in pRCC and was further reduced in mRCC compared with normal tissue. Besides, its expression levels were negatively correlated with T-category of tumor stage. Additionally, 786-O and A-704 cells with PIK3R1 depletion introduced by CRISPR/Cas9 system displayed enhanced proliferation, migration and epithelial-mesenchymal transition (EMT), and acquired a stem-like phenotype. Moreover, the PIK3R1 depletion promoted the phosphorylation of AKT in the cells. The knockdown of AKT by shRNA reduced p-GSK3 beta and CTNNB1 expression in the cells, while the depletion of CTNNB1 impaired stem-like phenotype of the cells. Overall, PIK3R1 down-regulation in RCC promotes propagation, migration, EMT and stem-like phenotype in renal cancer cells through the AKT/GSK3 beta/CTNNB1 pathway, and may contribute to progression and metastasis of RCC.