• Morphological Decomposition of the Early-type Spiral Galaxy M81 (NGC 3031)

    分类: 天文学 >> 星系和宇宙学 提交时间: 2023-12-08

    摘要: This paper presents a morphological investigation of the early-type spiral galaxy M81 (NGC 3031) through decomposition by fitting radial profiles of surface brightness using the software GALFIT, aimed at exploring structural components of M81 and quantifying their morphology. In this work, we adopt 6 types of decompositions with different numbers of morphological components, among which the most complicated one contains 5 components such as a bulge, a disk, a pair of outer spiral arms, a pair of inner spiral arms, and a galactic nucleus. The results show that, M81 hosts a classical bulge with the Sersic index 5.0; the morphology and the luminosity for the bulge are almost constant in the different decomposition types. The disk of M81 has the Sersic index 1.2 but the morphology and the luminosity are found sensitive to the inclusion of the inner spiral arms in the decomposition or not. The results of this work indicate that the combination of individual substructures has a considerable impact on the morphology of the galaxy as a mixture. On the basis of the results, the usability of the different types of decomposition is suggested in this work. The three-component decomposition, i.e., bulge + disk + nucleus, is applicable to statistics of large samples of galaxies; more complicated decomposition with spiral arms taken into account is suitable for precise measurements of individual galaxies in small samples. This work is based on the single-band Spitzer-The Infrared Array Camera (IRAC) 4.5 m image. In the future, we will carry out multi-wavelength decomposition, for the purpose of investigating spectral energy distributions and stellar population properties for the galactic substructures, and thereby deduce their formation history and evolution processes.

  • Direct Ion Beam Figuring Process and Rotational Measurement Method for Ultra-smooth Aspherical Surfaces of a 46.5 nm Telescope

    分类: 物理学 >> 地球物理学、天文学和天体物理学 提交时间: 2023-12-15 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: This paper describes a fabrication process for the hyperboloidal concave mirror of a 46.5 nm telescope. The 180 mm aperture hyperboloidal concave mirror and 70 mm aperture compensator are machined directly from chemical mechanical polishing of a spherical surface to a high-accuracy aspherical surface by ion beam figuring. The aspherical measurement method is the Dall null test. To minimize system errors in the measurement process, the rotational measurement method with six rotations is used in the null test. The results of the analysis for the ME (first solve the machined surface profile, then solve the system errors) and EM (first solve the system errors, then solve the machined surface profile) methods of calculation in the measurement are given. The ME method is a more accurate rotational test method, and the six rotations are appropriate for rotational measurements. After the figuring process, the hyperboloidal concave mirror surface profile reached 8.27 nm rms and the compensator surface profile is approximately 4 nm rms. The roughness of the hyperboloidal concave mirror is smooth to 0.160 nm rms.

  • The Solar Upper Transition Region Imager (SUTRI) onboard the SATech-01 satellite

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Solar Upper Transition Region Imager (SUTRI) onboard the Space Advanced Technology demonstration satellite (SATech-01), which was launched to a sun-synchronous orbit at a height of 500 km in July 2022, aims to test the on-orbit performance of our newly developed Sc-Si multi-layer reflecting mirror and the 2kx2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of 3 nm. SUTRI employs a Ritchey-Chretien optical system with an aperture of 18 cm. The on-orbit observations show that SUTRI images have a field of view of 41.6'x41.6' and a moderate spatial resolution of 8" without an image stabilization system. The normal cadence of SUTRI images is 30 s and the solar observation time is about 16 hours each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period. Approximately 15 GB data is acquired each day and made available online after processing. SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of 0.5 MK in the solar atmosphere, which has rarely been sampled by existing solar imagers. SUTRI observations will establish connections between structures in the lower solar atmosphere and corona, and advance our understanding of various types of solar activity such as flares, filament eruptions, coronal jets and coronal mass ejections.

  • The Solar Upper Transition Region Imager (SUTRI) onboard the SATech-01 satellite

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Solar Upper Transition Region Imager (SUTRI) onboard the Space Advanced Technology demonstration satellite (SATech-01), which was launched to a sun-synchronous orbit at a height of 500 km in July 2022, aims to test the on-orbit performance of our newly developed Sc-Si multi-layer reflecting mirror and the 2kx2k EUV CMOS imaging camera and to take full-disk solar images at the Ne VII 46.5 nm spectral line with a filter width of 3 nm. SUTRI employs a Ritchey-Chretien optical system with an aperture of 18 cm. The on-orbit observations show that SUTRI images have a field of view of 41.6'x41.6' and a moderate spatial resolution of 8" without an image stabilization system. The normal cadence of SUTRI images is 30 s and the solar observation time is about 16 hours each day because the earth eclipse time accounts for about 1/3 of SATech-01's orbit period. Approximately 15 GB data is acquired each day and made available online after processing. SUTRI images are valuable as the Ne VII 46.5 nm line is formed at a temperature regime of 0.5 MK in the solar atmosphere, which has rarely been sampled by existing solar imagers. SUTRI observations will establish connections between structures in the lower solar atmosphere and corona, and advance our understanding of various types of solar activity such as flares, filament eruptions, coronal jets and coronal mass ejections.