• A Semi-blind PCA-based Foreground Subtraction Method for 21 cm Intensity Mapping

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Principal Component Analysis (PCA) method and the Singular Value Decomposition (SVD) method are widely used for foreground subtraction in 21 cm intensity mapping experiments. We show their equivalence, and point out that the condition for completely clean separation of foregrounds and cosmic 21 cm signal using the PCA/SVD is unrealistic. We propose a PCA-based foreground subtraction method, dubbed "Singular Vector Projection (SVP)" method, which exploits a priori information of the left and/or right singular vectors of the foregrounds. We demonstrate with simulation tests that this new, semi-blind method can reduce the error of the recovered 21 cm signal by orders of magnitude, even if only the left and/or right singular vectors in the largest few modes are exploited. The SVP estimators provide a new, effective approach for 21 cm observations to remove foregrounds and uncover the physics in the cosmic 21 cm signal.

  • A Semi-blind PCA-based Foreground Subtraction Method for 21 cm Intensity Mapping

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Principal Component Analysis (PCA) method and the Singular Value Decomposition (SVD) method are widely used for foreground subtraction in 21 cm intensity mapping experiments. We show their equivalence, and point out that the condition for completely clean separation of foregrounds and cosmic 21 cm signal using the PCA/SVD is unrealistic. We propose a PCA-based foreground subtraction method, dubbed "Singular Vector Projection (SVP)" method, which exploits a priori information of the left and/or right singular vectors of the foregrounds. We demonstrate with simulation tests that this new, semi-blind method can reduce the error of the recovered 21 cm signal by orders of magnitude, even if only the left and/or right singular vectors in the largest few modes are exploited. The SVP estimators provide a new, effective approach for 21 cm observations to remove foregrounds and uncover the physics in the cosmic 21 cm signal.

  • Application of Regularization Methods in the Sky Map Reconstruction of the Tianlai Cylinder Pathfinder Array

    分类: 天文学 >> 天文学 提交时间: 2024-02-28 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: The Tianlai cylinder pathfinder is a radio interferometer array to test 21 cm intensity mapping techniques in the post-reionization era. It works in passive drift scan mode to survey the sky visible in the northern hemisphere. To deal with the large instantaneous field of view and the spherical sky, we decompose the drift scan data into m-modes, which are linearly related to the sky intensity. The sky map is reconstructed by solving the linear interferometer equations. Due to incomplete uv coverage of the interferometer baselines, this inverse problem is usually ill-posed, and regularization method is needed for its solution. In this paper, we use simulation to investigate two frequently used regularization methods, the Truncated Singular Value Decomposition (TSVD), and the Tikhonov regularization techniques. Choosing the regularization parameter is very important for its application. We employ the generalized cross validation method and the L-curve method to determine the optimal value. We compare the resulting maps obtained with the different regularization methods, and for the different parameters derived using the different criteria. While both methods can yield good maps for a range of regularization parameters, in the Tikhonov method the suppression of noisy modes are more gradually applied, produce more smooth maps which avoids some visual artefacts in the maps generated with the TSVD method.

  • An Ultra-long Wavelength Sky Model with Absorption Effect

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The radio sky at frequencies below $\sim10$ MHz is still largely unknown, this remains the last unexplored part of the electromagnetic spectrum in astronomy. The upcoming space experiments aiming at such low frequencies (ultra-long wavelength or ultra-low frequency) would benefit from reasonable expectations of the sky brightness distribution at relevant frequencies. In this work, we develop a radio sky model that is valid down to $\sim1$ MHz. In addition to the discrete HII objects, we take into account the free-free absorption by thermal electrons in the Milky Way's warm ionized medium (WIM). This absorption effect becomes obvious at $\lesssim10$ MHz, and could make the global radio spectrum turn over at $\sim3$ MHz. Our sky map shows unique features at the ultra-long wavelengths, including a darker Galactic plane in contrast to the sky at higher frequencies, and the huge shadows of the spiral arms on the sky map. It would be a useful guidance for designing the future ultra-long wavelength observations. Our Ultralong-wavelength Sky Model with Absorption (ULSA) model could be downloaded at https://doi.org/10.5281/zenodo.4454153.

  • Imaging sensitivity of a linear interferometer array on lunar orbit

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Ground-based observation at frequencies below 30 MHz is hindered by the ionosphere of the Earth and radio frequency interference. To map the sky at these low frequencies, we have proposed the Discovering the Sky at the Longest wavelength mission (DSL, also known as the "Hongmeng" mission, which means "Primordial Universe" in Chinese) concept, which employs a linear array of micro-satellites orbiting the Moon. Such an array can be deployed to the lunar orbit by a single rocket launch, and it can make interferometric observations achieving good angular resolutions despite the small size of the antennas. However, it differs from the conventional ground-based interferometer array or even the previous orbital interferometers in many aspects, new data-processing methods need to be developed. In this work, we make a series of simulations to assess the imaging quality and sensitivity of such an array. We start with an input sky model and a simple orbit model, generate mock interferometric visibilities, and then reconstruct the sky map. We consider various observational effects and practical issues, such as the system noise, antenna response, and Moon blockage. Based on the quality of the recovered image, we quantify the imaging capability of the array for different satellite numbers and array configurations. For the first time, we make practical estimates of the point source sensitivity for such a lunar orbit array, and predict the expected number of detectable sources for the mission. Depending on the radio source number distribution which is still very uncertain at these frequencies, the proposed mission can detect $10^2 \sim 10^4$ sources during its operation.

  • Detecting H i Galaxies with Deep Neural Networks in the Presence of Radio Frequency Interference

    分类: 物理学 >> 地球物理学、天文学和天体物理学 提交时间: 2023-12-15 合作期刊: 《Research in Astronomy and Astrophysics》

    摘要: In the neutral hydrogen (H i) galaxy survey, a significant challenge is to identify and extract the H igalaxy signal from the observational data contaminated by radio frequency interference (RFI). For a drift-scan survey, or more generally a survey of a spatially continuous region, in the time-ordered spectral data, the H i galaxies and RFI all appear as regions that extend an area in the time-frequency waterfall plot, so the extraction of the H i galaxies and RFI from such data can be regarded as an image segmentation problem, and machine-learning methods can be applied to solve such problems. In this study, we develop a method to effectively detect and extract signals of H i galaxies based on a Mask R-CNN network combined with the PointRend method. By simulating FAST-observed galaxy signals and potential RFI impact, we created a realistic data set for the training and testing of our neural network. We compared five different architectures and selected the best-performing one. This architecture successfully performs instance segmentation of H igalaxy signals in the RFI-contaminated time-ordered data, achieving a precision of 98.64% and a recall of 93.59%.

  • 1/f Noise Analysis for FAST HI Intensity Mapping Drift-Scan Experiment

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We investigate the 1/f noise of the Five-hundred-meter Aperture Spherical Telescope (FAST) receiver system using drift-scan data from an intensity mapping pilot survey. All the 19 beams have 1/f fluctuations with similar structures. Both the temporal and the 2D power spectrum densities are estimated. The correlations directly seen in the time series data at low frequency $f$ are associated with the sky signal, perhaps due to a coupling between the foreground and the system response. We use Singular Value Decomposition (SVD) to subtract the foreground. By removing the strongest components, the measured 1/f noise power can be reduced significantly. With 20 modes subtraction, the knee frequency of the 1/f noise in a 10 MHz band is reduced to $1.8 \times 10^{-3}\Hz$, well below the thermal noise over 500-seconds time scale. The 2D power spectra show that the 1/f-type variations are restricted to a small region in the time-frequency space and the correlations in frequency can be suppressed with SVD modes subtraction. The residual 1/f noise after the SVD mode subtraction is uncorrelated in frequency, and a simple noise diode frequency-independent calibration of the receiver gain at 8s interval does not affect the results. The 1/f noise can be important for HI intensity mapping, we estimate that the 1/f noise has a knee frequency $(f_{k}) \sim$ 6 $\times$ 10$^{-4}$Hz, and time and frequency correlation spectral indices $(\alpha) \sim 0.65$, $(\beta) \sim 0.8$ after the SVD subtraction of 30 modes. This can bias the HI power spectrum measurement by 10 percent.

  • The Tianlai Dish Pathfinder Array: design, operation and performance of a prototype transit radio interferometer

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Tianlai Dish Pathfinder Array is a radio interferometer designed to test techniques for 21~cm intensity mapping in the post-reionization universe as a means for measuring large-scale cosmic structure. It performs drift scans of the sky at constant declination. We describe the design, calibration, noise level, and stability of this instrument based on the analysis of about $\sim 5 \%$ of 6,200 hours of on-sky observations through October, 2019. Beam pattern determinations using drones and the transit of bright sources are in good agreement, and compatible with electromagnetic simulations. Combining all the baselines, we make maps around bright sources and show that the array behaves as expected. A few hundred hours of observations at different declinations have been used to study the array geometry and pointing imperfections, as well as the instrument noise behaviour. We show that the system temperature is below 80~K for most feed antennas, and that noise fluctuations decrease as expected with integration time, at least up to a few hundred seconds. Analysis of long integrations, from 10 nights of observations of the North Celestial Pole, yielded visibilities with amplitudes of 20-30~mK, consistent with the expected signal from the NCP radio sky with $<10\,$mK precision for $1 ~\mathrm{MHz} \times 1~ \mathrm{min}$ binning. Hi-pass filtering the spectra to remove smooth spectrum signal yields a residual consistent with zero signal at the $0.5\,$mK level.