按提交时间
按主题分类
按作者
按机构
  • Do we expect to detect electromagnetic radiation from merging stellar mass black binaries like GW150914? No

    分类: 物理学 >> 核物理学 提交时间: 2016-09-01

    摘要: Context: The LIGO consortium announced the first direct detection of gravitation wave event GW150914 from two merging black holes; however the nature of the black holes are still not clear. Aims: We study whether electromagnetic radiation can be detected from merging stellar mass black binaries like GW150914. Methods: We briefly investigate the possible growth and merging processes of the two stellar mass black holes in the merging event of GW150914 detected by aLIGO, as clocked by a distant external observer. Our main results are: (1) The description of the black hole growth using stationary metric of a pre-existing black hole predicts strong electromagnetic radiation from merging black holes, which is inconsistent with GW150914; (2) Only gravitational wave radiation can be produced in the coalescence of two black holes such as that in the GW150914 event, if the black hole growth is described using time-dependent metric considering the influence of the in-falling matter onto a pre-existing black hole, as clocked by a distant external observer. Conclusions: Future high sensitivity detections of gravitational waves from merging black holes might be used to probe matter distribution and space-time geometry in the vicinity of the horizon. Perhaps the GW150914-like events can be identified with traditional astronomy observations only if the black holes are embedded in extremely dense medium before their final merge, when very strong electromagnetic radiation is produced and can escape from the system.

  • Atypical radio pulsations from magnetar SGR 1935+2154

    分类: 天文学 >> 天文学 提交时间: 2023-12-29

    摘要: Magnetars are neutron stars with extremely strong magnetic fields, frequently powering high-energy activity in X-rays. Pulsed radio emission following some X-ray outbursts have been detected, albeit its physical origin is unclear. It has long been speculated that the origin of magnetars' radio signals is different from those from canonical pulsars, although convincing evidence is still lacking. Five months after magnetar SGR 1935+2154's X-ray outburst and its associated Fast Radio Burst (FRB) 20200428, a radio pulsar phase was discovered. Here we report the discovery of X-ray spectral hardening associated with the emergence of periodic radio pulsations from SGR 1935+2154 and a detailed analysis of the properties of the radio pulses. The complex radio pulse morphology, which contains both narrow-band emission and frequency drifts, has not been seen before in other magnetars, but is similar to those of repeating FRBs - even though the luminosities are many orders of magnitude different. The observations suggest that radio emission originates from the outer magnetosphere of the magnetar, and the surface heating due to the bombardment of inward-going particles from the radio emission region is responsible for the observed X-ray spectral hardening.