您选择的条件: Xue Peng
  • Quantitative Analysis of Integrin alpha 6 in Bladder Cancer Cell Lines

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-12

    摘要: The integrins, a family of transmembrane proteins, function in cell-to-cell and cell-to-extracellular matrix (ECM) adhesive interactions, and influence cell signaling of cell growth and differentiation. Expression of integrin 6 in three bladder cancer cell lines, HCV29, KK47 and YST1 were quantitatively analyzed by LC-MS using stable isotope labeling by amino acids in cell culture (SILAC), a simple and powerful proteomic strategy. The results showed that the non-invasive bladder cancer cell line KK47 expressed the highest level of integrin alpha 6. The expression of integrin alpha 6 in invasive bladder cancer cell line YTS1 was also higher than in normal bladder epithelial cell line HCV29. Furthermore, these results were confirmed by Western blotting, qPCR, immunohistochemistry and flow cytometry. Clinical data of mRNA 1TGA6 expression pattern from open-access database (www.oncomine.org) showed the same result during bladder cancer progression. All these indicated that integrin alpha 6 is associated with the invasion progress of the bladder cancer. The preliminary data in this study may sparkle the fundamental role of integrin 6 in the research of bladder cancer.

  • Comparison of Hydrazide Chemistry and Lectin Affinity Based Enrichment Methods for N-glycoproteomics

    分类: 生物学 >> 生物物理学 >> 生物物理、生物化学与分子生物学 提交时间: 2016-05-11

    摘要: Glycosylation is one of the most common and important post-translational modifications of proteins. Identification of large-scale N-linked glycoprotein is a very important aspect in glycoproteomics research. The N-glycopeptide enrichment is a key step in high-throughput identification of N-glycosylation site. Lectin enrichment and hydrazide chemistry are the two widely used N-glycopeptides enrichment methods. Each method can only enrich certain types of glycopeptides. It has been reported that the two methods are highly complementary, but few studies compared overlaps of glycosties from the two methods. In this paper, using HepG2 cells, we systematically compared the performance of hydrazide chemistry and lectins enrichment methods. The results showed that although the hydrazide method with glycopeptides enrichment efficiency of 76.7%, far higher than the 54.6% lectin enrichment method, 825 glycoprotein and 1 879 N-glycosylation sites identified with the lectin method was significantly more than 522 glycoprotein and 1 014 glycosylation sites enriched by the hydrazide method. Moreover, the two methods did not show significant complementary, together, only 853 glycoproteins and 1 959 N-glycosylation sites were identified. The overlapping results of identified N-glycosylation sites and N-glycoproteins from the two methods show that lectins enrichment method was better than hydrazide chemistry method.