您选择的条件: ZHOU Zhong-He
  • Do chondrocytes within calcified cartilage have a higher preservation potential than osteocytes? A preliminary taphonomy experiment

    分类: 生物学 >> 动物学 提交时间: 2023-03-14 合作期刊: 《古脊椎动物学报》

    摘要: Chondrocytes with remnants of nuclei and biomolecules were recently reported in two Cretaceous dinosaurs from North America and China. For multiple reasons, it was hypothesized that calcified cartilage (CC) had a better potential than bone to preserve ancient cells. Here we provide the first experimental test to this hypothesis by focusing on the most important variable responsible for cellular preservation: the postmortem blockage of autolysis. We compare the timing of autolysis between chondrocytes and osteocytes in an avian model (Anas platyrhynchos domesticus) buried for up to 60 days under natural conditions that did not inhibit autolytic enzymes. Within 15 days post-burial, almost all osteocytes were already cytolyzed but chondrocytes in CC were virtually unaffected. All osteocytes were cytolyzed after 30 days, but some chondrocytes were still present 60 days post-burial. Therefore, even in harsh conditions some CC chondrocytes still survive for months postmortem on a time scale compatible with permineralization. This is consistent with other data from the forensic literature showing the extreme resistance of hyaline cartilage (HC) chondrocytes after death and does support the hypothesis that CC has a better potential than bone for cellular preservation, especially in fossils that were not permineralized rapidly. However, because the samples used were previously frozen, it is possible that the pattern of autolysis observed here is also a product of cell death due to ice crystal formation and not strictly autolysis, meaning a follow-up experiment on fresh (non-frozen samples) is necessary to be extremely accurate in our conclusions. Nevertheless, this study does show that CC chondrocytes are very resistant to freezing, suggesting that chondrocytes are likely better preserved than osteocytes in permafrost fossils and mummies that underwent a freezingthawing cycle. It also suggests that cartilage (both hyaline and calcified) may be a better substrate for ancient DNA than bone. Moreover, even though we warrant follow-up taphonomy experiments with non-frozen samples paired with DNA sequencing, we already urge ancient DNA experts to test CC as a new substrate for ancient DNA analyses in fossils preserved in hot and temperate environments as well.

  • The morphology of Chiappeavis magnapremaxillo (Pengornithidae: Enantiornithes) and a comparison of aerodynamic function in Early Cretaceous avian tail fans

    分类: 地球科学 >> 地质学 提交时间: 2017-08-10 合作期刊: 《古脊椎动物学报》

    摘要: We provide a complete description of the skeletal anatomy of the holotype of Chiappeavis magnapremaxillo, the first enantiornithine to preserve a rectricial fan, suggesting that possibly rectricial bulbs were present in basal members of this clade. Notably, Chiappeavis preserves a primitive palatal morphology in which the vomers reach the premaxillae similar to Archaeopteryx but unlike the condition in the Late Cretaceous enantiornithine Gobipteryx. If rectricial bulbs were present, pengornithid pygostyle morphology suggests they were minimally developed. We estimate the lift generated by the tail fan preserved in this specimen and compare it to the tail fans preserved in other Early Cretaceous birds. Aerodynamic models indicate the tail of Chiappeavis produced less lift than that of sympatric ornithuromorphs. This information provides a possible explanation for the absence of widespread aerodynamic tail morphologies in the Enantiornithes. 契氏鸟(Chiappeavis)是首次发现保存有扇状尾羽的反鸟类,显示出尾羽球茎这一结构在较原始的反鸟类中已经发育。详细描述了巨前颌契氏鸟(C. magnapremaxillo)正型标本的骨骼形态学特征。契氏鸟的腭区形态与始祖鸟(Archaeopteryx)相似,而区别于晚白垩世的反鸟类戈壁鸟(Gobipteryx)。即使具有尾羽球茎,鹏鸟类的尾综骨形态也表明该结构发育较差。估算了在契氏鸟中由扇状尾羽所产生的浮力,并与其他早白垩世鸟类进行对比。结果显示,契氏鸟的扇状尾羽所产生的空气浮力小于同时代生活的今鸟型类,这有可能解释了反鸟类中具有空气动力学功能的尾羽形态普遍缺乏的现象。