您选择的条件: Nan Wang
  • Topological phenomena demonstrated in photorefractive photonic lattices

    分类: 光学 >> 量子光学 提交时间: 2023-02-19

    摘要: Topological photonics has attracted widespread research attention in the past decade due to its fundamental interest and unique manner in controlling light propagation for advanced applications. Paradigmatic approaches have been proposed to achieve topological phases including topological insulators in a variety of photonic systems. In particular, photonic lattices composed of evanescently coupled waveguide arrays have been employed conveniently to explore and investigate topological physics. In this article, we review our recent work on demonstration of topological phenomena in reconfigurable photonic lattices established by site-to-site cw-laser-writing or multiple-beam optical induction in photorefractive nonlinear crystals. We focus on the study of topological states realized in the celebrated one-dimensional Su-Schrieffer-Heeger lattices, including nonlinear topological edge states and gap solitons, nonlinearity-induced coupling to topological edge states, and nonlinear control of non-Hermitian topological states. In the two-dimensional case, we discuss two typical examples: universal mapping of momentum-space topological singularities through Dirac-like photonic lattices and realization of real-space nontrivial loop states in flatband photonic lattices. Our work illustrates how photorefractive materials can be employed conveniently to build up various synthetic photonic microstructures for topological studies, which may prove relevant and inspiring for exploration of fundamental phenomena in topological systems beyond photonics.

  • Theoretical study of the synthesis of superheavy nuclei with Z = 119 and 120 in heavy-ion reactions with trans-uranium targets

    分类: 物理学 >> 核物理学 提交时间: 2017-08-22

    摘要: By using a newly developed di-nuclear system model with a dynamical potential energy surface— the DNS-DyPES model, hot fusion reactions for synthesizing superheavy nuclei (SHN) with the charge number Z = 112–120 are studied. The calculated evaporation residue cross sections are in good agreement with available data. In the reaction 50Ti+249Bk → 299−x119 + xn, the maximal evaporation residue (ER) cross section is found to be about 0.11 pb for the 4n-emission channel. For projectile-target combinations producing SHN with Z = 120, the ER cross section increases with the mass asymmetry in the incident channel increasing. The maximal ER cross sections for 58Fe+244Pu and 54Cr+248Cm are relatively small (less than 0.01 pb) and those for 50Ti+249Cf and 50Ti+251Cf are about 0.05 and 0.25 pb, respectively.