按提交时间
按主题分类
按作者
按机构
您选择的条件: Yu Xu
  • Development of a scintillating-fiber-based beam monitor for the Coherent Muon-to-Electron Transition experiment

    分类: 物理学 >> 核物理学 提交时间: 2024-03-08

    摘要: COMET is a leading experiment to search for coherent conversion of $ mu^- mathrm{N} to e^- mathrm{N}$ with a high-intensity pulsed muon beamline, produced by the innovative slow extraction techniques. Therefore, it is critical to measure the characteristics of the muon beam. We set up a Muon Beam Monitor (MBM), where scintillation fibers (SciFi) weaved in the cross shape are coupled to silicon photomultipliers (SiPM), to measure the spatial profile and timing structure of the extracted muon beam for COMET. The MBM detector has been tested successfully with a proton beamline in China Spallation Neutron Source (CSNS) and taken data with good performance in the commissioning run called COMET Phase-$ alpha$. Experience of the MBM development, such as the mechanical structure and electronics readout, and its beam measurement results will be shared.

  • Possible detection of coronal mass ejections on late-type main-sequence stars in LAMOST medium-resolution spectra

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Context. Stellar coronal mass ejections (CMEs) are the primary driver of the exoplanetary space weather and they could affect the habitability of exoplanets. However, detections of possible stellar CME signatures are extremely rare. Aims. This work aims to detect stellar CMEs from time-domain spectra observed through the LAMOST Medium-Resolution Spectroscopic Survey (LAMOST-MRS). Our sample includes 1,379,408 LAMOST-MRS spectra of 226,194 late-type main-sequence stars ($\rm T_{eff} 4.0$). Methods. We first identified stellar CME candidates by examining the asymmetries of H$\alpha$ line profiles, and then performed double Gaussian fitting for H$\alpha$ contrast profiles (differences between the CME spectra and reference spectra) of the CME candidates to analyze the temporal variation of the asymmetric components. Results. Three stellar CME candidates were detected on three M dwarfs. The H$\alpha$ and Mg I triplet lines (at 5168.94 {\AA}, 5174.13 {\AA}, 5185.10 {\AA}) of candidate 1 all exhibit a blue-wing enhancement, and the corresponding Doppler shift of this enhancement shows a gradually increasing trend. The H$\alpha$ line also shows an obvious blue-wing enhancement in candidate 2. In candidate 3, the H$\alpha$ line shows an obvious red-wing enhancement, and the corresponding projected maximum velocity exceeds the surface escape velocity of the host star. The lower limit of the CME mass was estimated to be $\sim$$8 \times 10^{17}$ g to $4 \times 10^{18}$ g for these three candidates.

  • Can we detect coronal mass ejections through asymmetries of Sun-as-a-star extreme-ultraviolet spectral line profiles?

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Coronal mass ejections (CMEs) are the largest-scale eruptive phenomena in the solar system. Associated with enormous plasma ejections and energy release, CMEs have an important impact on the solar-terrestrial environment. Accurate predictions of the arrival times of CMEs at the Earth depend on the precise measurements on their three-dimensional velocities, which can be achieved using simultaneous line-of-sight (LOS) and plane-of-sky (POS) observations. Besides the POS information from routine coronagraph and extreme ultraviolet (EUV) imaging observations, spectroscopic observations could unveil the physical properties of CMEs including their LOS velocities. We propose that spectral line asymmetries measured by Sun-as-a-star spectrographs can be used for routine detections of CMEs and estimations of their LOS velocities during their early propagation phases. Such observations can also provide important clues for the detection of CMEs on other solar-like stars. However, few studies have concentrated on whether we can detect CME signals and accurately diagnose CME properties through Sun-as-a-star spectral observations. In this work, we constructed a geometric CME model and derived the analytical expressions for full-disk integrated EUV line profiles during CMEs. For different CME properties and instrumental configurations, full disk-integrated line profiles were synthesized. We further evaluated the detectability and diagnostic potential of CMEs from the synthetic line profiles. Our investigations provide important constraints on the future design of Sun-as-a-star spectrographs for CME detections through EUV line asymmetries.

  • Detection of Flare-induced Plasma Flows in the Corona of EV Lac with X-ray Spectroscopy

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Stellar flares are characterized by sudden enhancement of electromagnetic radiation from the atmospheres of stars. Compared to their solar counterparts, our knowledge on the coronal plasma dynamics of stellar flares and their connection to coronal mass ejections (CMEs) remains very limited. With time-resolved high-resolution spectroscopic observations from the \textit{Chandra} X-ray observatory, we detected noticeable coronal plasma flows during several stellar flares on a nearby dMe star EV Lac. In the observed spectra of O~{\sc{viii}} (3 MK), Fe~{\sc{xvii}} (6 MK), Mg~{\sc{xii}} (10 MK), and Si~{\sc{xiv}} (16 MK) lines, these flare-induced upflows/downflows appear as significant Doppler shifts of several tens to \speed{130}, and the upflow velocity generally increases with temperature. Variable line ratios of the Si~{\sc{xiii}} triplet reveal that these plasma flows in most flares are accompanied by an increase of the coronal plasma density and temperature. We interpret these results as X-ray evidences for chromospheric evaporation on EV Lac. In two successive flares, the plasma flow pattern and a sharp increase of the measured coronal density are highly suggestive of explosive evaporation. The transition from redshifts to blueshifts in such an explosive evaporation occurs at a temperature of at least 10 MK, much higher than that observed in solar flares ($\sim$1 MK). However, in one flare the cool and warm upflows appear to be accompanied by a decreasing plasma density, which might be explained by a stellar filament/prominence eruption coupled to this flare. These results provide important clues to understand the coronal plasma dynamics during flares on M dwarfs.

  • Three-dimensional Propagation of the Global EUV Wave associated with a solar eruption on 2021 October 28

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: We present a case study for the global extreme ultraviolet (EUV) wave and its chromospheric counterpart `Moreton-Ramsey wave' associated with the second X-class flare in Solar Cycle 25 and a halo coronal mass ejection (CME). The EUV wave was observed in the H$\alpha$ and EUV passbands with different characteristic temperatures. In the 171 {\AA} and 193/195 {\AA} images, the wave propagates circularly with an initial velocity of 600-720 km s$^{-1}$ and a deceleration of 110-320 m s$^{-2}$. The local coronal plasma is heated from log(T/K)=5.9 to log(T/K)=6.2 during the passage of the wavefront. The H$\alpha$ and 304 {\AA} images also reveal signatures of wave propagation with a velocity of 310-540 km s$^{-1}$. With multi-wavelength and dual-perspective observations, we found that the wavefront likely propagates forwardly inclined to the solar surface with a tilt angle of ~53.2$^{\circ}$. Our results suggest that this EUV wave is a fast-mode magnetohydrodynamic wave or shock driven by the expansion of the associated CME, whose wavefront is likely a dome-shaped structure that could impact the upper chromosphere, transition region and corona.

  • Sun-as-a-star spectroscopic observations of the line-of-sight velocity of a solar eruption on October 28, 2021

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The propagation direction and true velocity of a solar coronal mass ejection, which are among the most decisive factors for its geo-effectiveness, are difficult to determine through single-perspective imaging observations. Here we show that Sun-as-a-star spectroscopic observations, together with imaging observations, could allow us to solve this problem. Using observations of the Extreme-ultraviolet Variability Experiment onboard the Solar Dynamics Observatory, we found clear blue-shifted secondary emission components in extreme ultraviolet spectral lines during a solar eruption on October 28, 2021. From simultaneous imaging observations, we found that the secondary components are caused by a mass ejection from the flare site. We estimated the line-of-sight (LOS) velocity of the ejecta from both the double Gaussian fitting method and the red-blue asymmetry analysis. The results of both methods agree well with each other, giving an average LOS velocity of the plasma of $\sim 423~\rm{km~s^{-1}}$. From the $304$ \AA~image series taken by the Extreme Ultraviolet Imager onboard the Solar Terrestrial Relation Observatory-A (STEREO-A) spacecraft, we estimated the plane-of-sky (POS) velocity from the STEREO-A viewpoint {to be around $587~\rm{km~s^{-1}}$}. The full velocity of the bulk motion of the ejecta was then computed by combining the imaging and spectroscopic observations, which turns out to be around $596~\rm{km~s^{-1}}$ with an angle of $42.4^\circ$ to the west of the Sun-Earth line and $16.0^\circ$ south to the ecliptic plane.

  • Model Independent Approach of the JUNO $^8$B Solar Neutrino Program

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The physics potential of detecting $^8$B solar neutrinos is exploited at the Jiangmen Underground Neutrino Observatory (JUNO), in a model independent manner by using three distinct channels of the charged-current (CC), neutral-current (NC) and elastic scattering (ES) interactions. Due to the largest-ever mass of $^{13}$C nuclei in the liquid-scintillator detectors and the potential low background level, $^8$B solar neutrinos would be observable in the CC and NC interactions on $^{13}$C for the first time. By virtue of optimized event selections and muon veto strategies, backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC and ES channels to guarantee the $^8$B solar neutrino observation. From the sensitivity studies performed in this work, we show that one can reach the precision levels of 5%, 8% and 20% for the $^8$B neutrino flux, $\sin^2\theta_{12}$, and $\Delta m^2_{21}$, respectively, using ten years of JUNO data. It would be unique and helpful to probe the details of both solar physics and neutrino physics. In addition, when combined with SNO, the world-best precision of 3% is expected for the $^8$B neutrino flux measurement.

  • Broadening and redward asymmetry of H$\alpha$ line profiles observed by LAMOST during a stellar flare on an M-type star

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Stellar flares are characterized by sudden enhancement of electromagnetic radiation in stellar atmospheres. So far much of our understanding of stellar flares comes from photometric observations, from which plasma motions in flare regions could not be detected. From the spectroscopic data of LAMOST DR7, we have found one stellar flare that is characterized by an impulsive increase followed by a gradual decrease in the H$\alpha$ line intensity on an M4-type star, and the total energy radiated through H${\alpha}$ is estimated to be on the order of $10^{33}$ erg. The H$\alpha$ line appears to have a Voigt profile during the flare, which is likely caused by Stark pressure broadening due to the dramatic increase of electron density and/or opacity broadening due to the occurrence of strong non-thermal heating. Obvious enhancement has been identified at the red wing of the H$\alpha$ line profile after the impulsive increase of the H$\alpha$ line intensity. The red wing enhancement corresponds to plasma moving away from the Earth at a velocity of 100$-$200 km s$^{-1}$. According to the current knowledge of solar flares, this red wing enhancement may originate from: (1) flare-driven coronal rain, (2) chromospheric condensation, or (3) a filament/prominence eruption that either with a non-radial backward propagation or with strong magnetic suppression. The total mass of the moving plasma is estimated to be on the order of $10^{15}$ kg.