您选择的条件: ZHANG Mingjun
  • Evaluating the soil evaporation loss rate in a gravel-sand mulching environment based on stable isotopes data

    分类: 农、林、牧、渔 >> 农业基础学科 提交时间: 2022-10-13 合作期刊: 《干旱区科学》

    摘要:In order to cope with drought and water shortages, the working people in the arid areas of Northwest China have developed a drought-resistant planting method, namely, gravel-sand mulching, after long-term agricultural practices. To understand the effects of gravel-sand mulching on soil water evaporation, we selected Baifeng peach (Amygdalus persica L.) orchards in Northwest China as the experimental field in 2021. Based on continuously collected soil water stable isotopes data, we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess (lc-excess) coupled Rayleigh fractionation model and Craig-Gordon model. The results show that the average soil water content in the plots with gravel-sand mulching is 1.86% higher than that without gravel-sand mulching. The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching. Moreover, the average lc-excess value in the plots without gravel-sand mulching is smaller. In addition, the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching. The lc-excess value was negative for both the plots with and without gravel-sand mulching, and it has good correlation with relative humidity, average temperature, input water content, and soil water content. The effect of gravel-sand mulching on soil evaporation is most prominent in August. Compared with the evaporation data of similar environments in the literature, the lc-excess coupled Rayleigh fractionation model is better. Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation, which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.

  • Water use characteristics of different pioneer shrubs at different ages in western Chinese Loess Plateau: Evidence from δ2H offset correction

    分类: 生物学 >> 生态学 提交时间: 2022-06-17 合作期刊: 《干旱区科学》

    摘要: Abstract: Caragana korshinskii Kom. and Tamarix ramosissima Ledeb. are pioneer shrubs for water and soil conservation, and for windbreak and sand fixation in arid and semi-arid areas. Understanding the water use characteristics of different pioneer shrubs at different ages is of great importance for their survival when extreme rainfall occurs. In recent years, the stable isotope tracing technique has been used in exploring the water use strategies of plants. However, the widespread 2H offsets of stem water from its potential sources result in conflicting interpretations of water utilization of plants in arid and semi-arid areas. In this study, we used three sets of hydrogen and oxygen stable isotope data (2H and 18O, corrected 2H_c1 based on SW-excess and 18O, and corrected 2H_c2 based on 8.1 and 18O) as inputs for the MixSIAR model to explore the water use characteristics of C. korshinskii and T. ramosissima at different ages and in response to rainfall. The results showed that 2H_c1 and 18O have the best performance, and the contribution rate of deep soil water was underestimated because of 2H offset. During the dry periods, C. korshinskii and T. ramosissima at different ages both obtained mostly water from deeper soil layers. After rainfall, the proportions of surface (010 cm) and shallow (1040 cm) soil water for C. korshinskii and T. ramosissima at different ages both increased. Nevertheless, there were different response mechanisms of these two plants for rainfall. In addition, C. korshinskii absorbed various potential water sources, while T. ramosissima only used deep water. These flexible water use characteristics of C. korshinskii and T. ramosissima might facilitate the coexistence of plants once extreme rainfall occurs. Thus, reasonable allocation of different plants may be a good vegetation restoration program in western Chinese Loess Plateau.