您选择的条件: Dahai Yan
  • Gaussian Process Modeling Blazar Multiwavelength Variability: Indirectly Resolving Jet Structure

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Blazar jet structure can be indirectly resolved by analyzing the multiwavelength variability. In this work, we analyze the long-term variability of blazars in radio, optical and X-ray energies with the Gaussian process (GP) method. The multiwavelength variability can be successfully characterized by the damped-random walk (DRW) model. The nonthermal optical characteristic timescales of 38 blazars are statistically consistent with the $\gamma$-ray characteristic timescales of 22 blazars. For three individuals (3C 273, PKS 1510-089, and BL Lac), the nonthermal optical, X-ray, and $\gamma$-ray characteristic timescales are also consistent within the measured 95$\%$ errors, but the radio timescale of 3C 273 is too large to be constrained by the decade-long light curve. The synchrotron and inverse-Compton emissions have the same power spectral density, suggesting that the long-term jet variability is irrelevant to the emission mechanism. In the plot of the rest-frame timescale versus black hole mass, the optical-$\gamma$-ray timescales of the jet variability occupy almost the same space with the timescales of accretion disk emission from normal quasars, which may imply that the long-term variabilities of the jet and accretion disk are driven by the same physical process. It is suggested that the nonthermal optical-X-ray and $\gamma$-ray emissions are produced in the same region, while the radio core which can be resolved by very-long-baseline interferometry locates at a far more distant region from the black hole. Our study suggests a new methodology for comparing thermal and nonthermal emissions, which is achieved by using the standard GP method.

  • Gaussian Process Modeling Blazar Multiwavelength Variability: Indirectly Resolving Jet Structure

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Blazar jet structure can be indirectly resolved by analyzing the multiwavelength variability. In this work, we analyze the long-term variability of blazars in radio, optical and X-ray energies with the Gaussian process (GP) method. The multiwavelength variability can be successfully characterized by the damped-random walk (DRW) model. The nonthermal optical characteristic timescales of 38 blazars are statistically consistent with the $\gamma$-ray characteristic timescales of 22 blazars. For three individuals (3C 273, PKS 1510-089, and BL Lac), the nonthermal optical, X-ray, and $\gamma$-ray characteristic timescales are also consistent within the measured 95$\%$ errors, but the radio timescale of 3C 273 is too large to be constrained by the decade-long light curve. The synchrotron and inverse-Compton emissions have the same power spectral density, suggesting that the long-term jet variability is irrelevant to the emission mechanism. In the plot of the rest-frame timescale versus black hole mass, the optical-$\gamma$-ray timescales of the jet variability occupy almost the same space with the timescales of accretion disk emission from normal quasars, which may imply that the long-term variabilities of the jet and accretion disk are driven by the same physical process. It is suggested that the nonthermal optical-X-ray and $\gamma$-ray emissions are produced in the same region, while the radio core which can be resolved by very-long-baseline interferometry locates at a far more distant region from the black hole. Our study suggests a new methodology for comparing thermal and nonthermal emissions, which is achieved by using the standard GP method.

  • Dynamic changes of emitting electron distribution in the jet of 3C 279: signatures of acceleration and cooling

    分类: 物理学 >> 核物理学 提交时间: 2016-09-14

    摘要: We study the dynamic changes of electron energy distribution (EED) through systematically analysing the quasi-simultaneous spectral energy distributions (SEDs) of the flat spectrum radio quasar 3C 279 in different states. With Markov chain Monte Carlo (MCMC) technique we model fourteen SEDs of 3C 279 using a leptonic model with a three-parameter log-parabola electron energy distribution (EED). The 14 SEDs can be satisfactorily fitted with the one-zone leptonic model. The observed γ rays in 13 states are attributed to Compton scattering of external infrared photons from a surrounding dusty torus. The curved γ-ray spectrum observed during 2-8 April 2014 is well explained by the external Compton of dust radiation. It is found that there is a clear positive correlation between the curvature parameter b of the EED and the electron peak energy γ′pk. No clear correlation between b and the synchrotron peak frequency νs is found, due to the varied product of Doppler factor and fluid magnetic field from state to state. We interpret the correlation of b−γ′pk in a stochastic acceleration scenario. This positive correlation is in agreement with the prediction in the stage when the balance between acceleration and radiative cooling of the electrons is nearly established in the case of the turbulence spectral index q=2.

  • Parameter constraints in a near-equipartition model with multifrequency NuSTAR, Swift, and Fermi-LAT data from 3C 279

    分类: 物理学 >> 核物理学 提交时间: 2016-09-14

    摘要: Precise spectra of 3C 279 in the 0.5-70 keV range, obtained during two epochs of \emph{Swift} and \emph{NuSTAR} observations, are analyzed using a near-equipartition model. We apply a one-zone leptonic model with a three-parameter log-parabola electron energy distribution (EED) to fit the \emph{Swift} and \emph{NuSTAR} X-ray data, as well as simultaneous optical and \emph{Fermi}-LAT γ-ray data. The Markov Chain Monte Carlo (MCMC) technique is used to search the high-dimensional parameter space and evaluate the uncertainties on model parameters. We show that the two spectra can be successfully fit in near-equipartition conditions, defined by the ratio of the energy density of relativistic electrons to magnetic field ζe being close to unity. In both spectra, the observed X-rays are dominated by synchrotron-self Compton photons, and the observed γ rays are dominated by Compton scattering of external infrared photons from a surrounding dusty torus. Model parameters are well constrained. From the low state to the high state, both the curvature of the log-parabola width parameter and the synchrotron peak frequency significantly increase. The derived magnetic fields in the two states are nearly identical (∼1\ G), but the Doppler factor in the high state is larger than that in the low state (∼28 versus ∼18). We derive that the gamma-ray emission site takes place outside the broad-line region, at ≳ 0.1 pc from the black hole, but within the dusty torus. Implications for 3C 279 as a source of high-energy cosmic-rays are discussed.

  • Near-Equipartition Jets with Log-Parabola Electron Energy Distribution and the Blazar Spectral-Index Diagrams

    分类: 物理学 >> 核物理学 提交时间: 2016-09-13

    摘要: Fermi-LAT analyses show that the gamma-ray photon spectral indices Gamma_gamma of a large sample of blazars correlate with the vFv peak synchrotron frequency v_s according to the relation Gamma_gamma = d - k log v_s. The same function, with different constants d and k, also describes the relationship between Gamma_gamma and peak Compton frequency v_C. This behavior is derived analytically using an equipartition blazar model with a log-parabola description of the electron energy distribution (EED). In the Thomson regime, k = k_EC = 3b/4 for external Compton processes and k = k_SSC = 9b/16 for synchrotron self-Compton (SSC) processes, where b is the log-parabola width parameter of the EED. The BL Lac object Mrk 501 is fit with a synchrotron/SSC model given by the log-parabola EED, and is best fit away from equipartition. Corrections are made to the spectral-index diagrams for a low-energy power-law EED and departures from equipartition, as constrained by absolute jet power. Analytic expressions are compared with numerical values derived from self-Compton and external Compton scattered gamma-ray spectra from Ly alpha broad-line region and IR target photons. The Gamma_gamma vs. v_s behavior in the model depends strongly on b, with progressively and predictably weaker dependences on gamma-ray detection range, variability time, and isotropic gamma-ray luminosity. Implications for blazar unification and blazars as ultra-high energy cosmic-ray sources are presented. Arguments by Ghisellini et al. (2014) that the jet power exceeds the accretion luminosity depend on the doubtful assumption that we are viewing at the Doppler angle.