您当前的位置: > 详细浏览

Serial in Vivo Imaging Using a Fluorescence Probe Allows Identification of Tumor Early Response to Cetuximab Immunotherapy

请选择邀稿期刊:
摘要: Cetuximab is an antiepidermal growth factor receptor (EGFR) monoclonal antibody that has received the approval of the Food and Drug Administration (FDA) for cancer treatment. However, most clinical studies indicate that cetuximab can only elicit positive effects on a subset of cancer patients. In this study, we investigated whether near-infrared fluorescence (NIRF) imaging of tumor vascular endothelial growth factor (VEGF) expression could be a biomarker for tumor early response to cetuximab therapy in preclinical wild-type and mutant tumor models of the KRAS gene. The treatment efficacy of cetuximab was determined in both HT-29 (wild-type KRAS) and HTC-116 (mutant KRAS) human colon cancer models. A VEGF-specific optical imaging probe (Dye755-Ran) was synthesized by conjugating ranibizumab (an anti-VEGF antibody Fab fragment) with a NIRF dye. Serial optical scans with Dye755-Ran were performed in HT-29 and HTC-116 xenograft models. By using longitudinal NIRF imaging, we were able to detect early tumor response on day 3 and day 5 after initiation of cetuximab treatment in the cetuximab-responsive HT-29 tumor model. Enzyme-linked immunosorbent assay (ELISA) confirmed that cetuximab treatment inhibited human VEGF expression in the KRAS wild-type HT-29 tumor but not in the KRAS mutant HCT-116 tumor. We have demonstrated that the antitumor effect of cetuximab can be noninvasively monitored by serial fluorescence imaging using Dye755-Ran. VEGF expression detected by optical imaging could serve as a sensitive biomarker for tumor early response to drugs that directly or indirectly act on VEGF.

版本历史

[V1] 2016-05-11 08:40:36 ChinaXiv:201605.01245V1 下载全文
点击下载全文
预览
同行评议状态
待评议
许可声明
metrics指标
  •  点击量2791
  •  下载量1424
评论
分享