• Simulating long-term effect of Hyrcanian forest loss on phosphorus loading at the sub-watershed level

    Subjects: Physics >> General Physics: Statistical and Quantum Mechanics, Quantum Information, etc. submitted time 2018-04-24 Cooperative journals: 《干旱区科学》

    Abstract:Conversion of forest land to farmland in the Hyrcanian forest of northern Iran increases the nutrient input, especially the phosphorus (P) nutrient, thus impacting the water quality. Modeling the effect of forest loss on surface water quality provides valuable information for forest management. This study predicts the future impacts of forest loss between 2010 and 2040 on P loading in the Tajan River watershed at the sub-watershed level. To understand drivers of the land cover, we used Land Change Modeler (LCM) combining with the Soil Water Assessment Tool (SWAT) model to simulate the impacts of land use change on P loading. We characterized priority management areas for locating comprehensive and cost-effective management practices at the sub-watershed level. Results show that agricultural expansion has led to an intense deforestation. During the future period 2010–2040, forest area is expected to decrease by 34,739 hm2. And the areas of pasture and agriculture are expected to increase by 7668 and 27,071 hm2, respectively. In most sub-watersheds, P pollution will be intensified with the increase in deforestation by the year 2040. And the P concentration is expected to increase from 0.08 to 2.30 mg/L in all of sub-watersheds by the year 2040. It should be noted that the phosphorous concentration exceeds the American Public Health Association′s water quality standard of 0.2 mg/L for P in drinking water in both current and future scenarios in the Tajan River watershed. Only 30% of sub-watersheds will comply with the water quality standards by the year 2040. The finding of the present study highlights the importance of conserving forest area to maintain a stable water quality.