• Nutrient coordination mechanism of tiger nut induced by rhizosphere soil nutrient variation in an arid area, China

    分类: 生物学 >> 植物学 提交时间: 2023-10-17 合作期刊: 《干旱区科学》

    摘要: Tiger nut is a bioenergy crop planted in arid areas of northern China to supply oil and adjust the planting structure. However, in the western region of Inner Mongolia Autonomous Region, China, less water resources have resulted in a scarcity of available farmland, which has posed a huge obstacle to planting tiger nut. Cultivation of tiger nut on marginal land can effectively solve this problem. To fully unlock the production potential of tiger nut on marginal land, it is crucial for managers to have comprehensive information on the adaptive mechanism and nutrient requirement of tiger nut in different growth periods. This study aims to explore these key information from the perspective of nutrient coordination strategy of tiger nut in different growth periods and their relationship with rhizosphere soil nutrients. Three fertilization treatments including no fertilization (N:P (nitrogen:phosphorous)=0:0), traditional fertilization (N:P=15:15), and additional N fertilizer (N:P=60:15)) were implemented on marginal land in the Dengkou County. Plant and soil samples were collected in three growth periods, including stolon tillering period, tuber expanding period, and tuber mature period. Under no fertilization, there was a significant correlation between N and P contents of tiger nut roots and tubers and the same nutrients in the rhizosphere soil (P<0.05). Carbon (C), N, and P contents of roots were significantly higher than those of leaves (P<0.05), and the C:N ratio of all organs was higher than those under other treatments before tuber maturity (P<0.05). Under traditional fertilization, there was a significant impact on the P content of tiger nut tubers (P<0.05). Under additional N fertilizer, the accumulation rate of N and P was faster in stolons than in tubers (P<0.05) with lower N:P ratio in stolons during the tuber expansion period (P<0.05), but higher N:P ratio in tubers (P<0.05). The limited availability of nutrients in the rhizosphere soil prompts tiger nut to increase the C:N ratio, improving N utilization efficiency, and maintaining N:P ratio in tubers. Elevated N levels in the rhizosphere soil decrease the C:N ratio of tiger nut organs and N:P ratio in stolons, promoting rapid stolon growth and shoot production. Supplementary P is necessary during tuber expansion, while a higher proportion of N in fertilizers is crucial for the aboveground biomass production of tiger nut.