按提交时间
按主题分类
按作者
按机构
您选择的条件: Yong Chen
  • Estimate of the Background and Sensitivity of theFollow-up X-ray Telescope onboard Einstein Probe

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: As a space X-ray imaging mission dedicated to time-domain astrophysics, the Einstein Probe (EP) carries two kinds of scientific payloads, the wide-field X-ray telescope (WXT) and the follow-up X-ray telescope (FXT). FXT utilizes Wolter-I type mirrors and the pn-CCD detectors. In this work, we investigate the in-orbit background of FXT based on Geant4 simulation. The impact of various space components present in the EP orbital environment are considered, such as the cosmic photon background, cosmic ray primary and secondary particles (e.g. protons, electrons and positrons), albedo gamma rays, and the low-energy protons near the geomagnetic equator. The obtained instrumental background at 0.5-10 keV, which is mainly induced by cosmic ray protons and cosmic photon background, corresponds to a level of $\sim$3.1$\times$10$^{-2}$ counts s$^{-1}$ keV$^{-1}$ in the imaging area of the focal plane detector (FPD), i.e. 3.7$\times$10$^{-3}$ counts s$^{-1}$ keV$^{-1}$ cm$^{-2}$ after normalization. Compared with the instrumental background, the field of view (FOV) background, which is induced by cosmic photons reflected by the optical mirror, dominates below 2 keV. Based on the simulated background level within the focal spot (a 30$^{\prime\prime}$-radius circle), the sensitivity of FXT is calculated, which could theoretically achieve several $\mu$crab (in the order of 10$^{-14}$ erg cm$^{-2}$ s$^{-1}$) in 0.5-2 keV and several tens of $\mu$crab (in the order of 10$^{-13}$ erg cm$^{-2}$ s$^{-1}$) in 2-10 keV for a pointed observation with an exposure of 25 minutes. This sensitivity becomes worse by a factor of $\sim2$ if additional 10% systematic uncertainty of the background subtraction is included.

  • Five-year in-orbit background of Insight-HXMT

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Purpose: We present the five-year in-orbit background evolution of Insight-HXMT since the launch, as well as the effects of the background model in data analysis. Methods: The backgrounds of the three main payloads, i.e., Low-Energy Telescope, Medium-Energy Telescope and High-Energy Telescope, are described, respectively. The evolution of the background over time is obtained by simply comparing the background in every year during the in-orbit operation of Insight-HXMT. Results: The major observational characteristics of the Insight-HXMT in-orbit background are presented, including the light curve, spectrum, geographical distribution, and long-term evolution. The systematic error in background estimation is investigated for every year. Conclusion: The observational characteristics of the five-year in-orbit background are consistent with our knowledge of the satellite design and the space environment, and the background model is still valid for the latest observations of Insight-HXMT.

  • The 100-m X-ray Test Facility at IHEP

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2$\sim$60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.

  • Five-year in-orbit background of Insight-HXMT

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Purpose: We present the five-year in-orbit background evolution of Insight-HXMT since the launch, as well as the effects of the background model in data analysis. Methods: The backgrounds of the three main payloads, i.e., Low-Energy Telescope, Medium-Energy Telescope and High-Energy Telescope, are described, respectively. The evolution of the background over time is obtained by simply comparing the background in every year during the in-orbit operation of Insight-HXMT. Results: The major observational characteristics of the Insight-HXMT in-orbit background are presented, including the light curve, spectrum, geographical distribution, and long-term evolution. The systematic error in background estimation is investigated for every year. Conclusion: The observational characteristics of the five-year in-orbit background are consistent with our knowledge of the satellite design and the space environment, and the background model is still valid for the latest observations of Insight-HXMT.

  • The 100-m X-ray Test Facility at IHEP

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The 100-m X-ray Test Facility of the Institute of High Energy Physics (IHEP) was initially proposed in 2012 for the test and calibration of the X-ray detectors of the Hard X-ray Modulation Telescope (HXMT) with the capability to support future X-ray missions. The large instrument chamber connected with a long vacuum tube can accommodate the X-ray mirror, focal plane detector and other instruments. The X-ray sources are installed at the other end of the vacuum tube with a distance of 105 m, which can provide an almost parallel X-ray beam covering 0.2$\sim$60 keV energy band. The X-ray mirror modules of the Einstein Probe (EP) and the enhanced X-ray Timing and Polarimetry mission (eXTP) and payload of the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM) have been tested and calibrated with this facility. It has been also used to characterize the focal plane camera and aluminum filter used on the Einstein Probe. In this paper, we will introduce the overall configuration and capability of the facility, and give a brief introduction of some calibration results performed with this facility.

  • Neutral Atmospheric Density Measurement Using Insight-HXMT Data by Earth Occultation Technique

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Earth occultation technique has broad applications in both astronomy and atmospheric density measurements. We construct the background model during the occultation of the Crab Nebula observed by the Insight-Hard X-ray Modulation Telescope (Insight-HXMT) at energies between 6 keV and 100 keV. We propose a Bayesian atmospheric density retrieval method based on the Earth occultation technique, combining Poisson and Gaussian statistics. By modeling the atmospheric attenuation of X-ray photons during the occultation, we simultaneously retrieved the neutral densities of the atmosphere at different altitude ranges. Our method considers the correlation of densities between neighboring atmospheric layers and reduces the potential systematic bias to which previous work may be subject. Previous analyses based on light curve fitting or spectral fitting also lost some spectral or temporal information of the data. In contrast to previous work, the occultation data observed by the three telescopes onboard Insight-HXMT is fully used in our analysis, further reducing the statistical error in density retrieval. We apply our method to cross-check the (semi-)empirical atmospheric models, using 115 sets of occultation data of the Crab Nebula observed by Insight-HXMT. We find that the retrieved neutral density is ~10%, ~20%, and ~25% less than the values of the widely used atmospheric model NRLMSISE-00, in the altitude range of 55--80 km, 80--90 km, and 90--100 km, respectively. We also show that the newly released atmospheric model NRLMSIS 2.0 is generally consistent with our density measurements.

  • In-orbit performance of LE onboard Insight-HXMT in the first 5 years

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Purpose: The Low-Energy X-ray telescope (LE) is a main instrument of the Insight-HXMT mission and consists of 96 Swept Charge Devices (SCD) covering the 1-10 keV energy band. The energy gain and resolution are continuously calibrated by analysing Cassiopeia A (Cas A) and blank sky data, while the effective areas are also calibrated with the observations of the Crab Nebula. In this paper, we present the evolution of the in-orbit performances of LE in the first 5 years since launch. Methods: The Insight-HXMT Data Analysis Software package (HXMTDAS) is utilized to extract the spectra of Cas A, blank sky, and Crab Nebula using different Good Time Interval (GTI) selections. We fit a model with a power-law continuum and several Gaussian lines to different ranges of Cas A and blank sky spectra to get peak energies of their lines through xspec. After updating the energy gain calibration in CALibration DataBase (CALDB), we rerun the Cas A data to obtain the energy resolution. An empirical function is used to modify the simulated effective areas so that the background-subtracted spectrum of the Crab Nebula can best match the standard model of the Crab Nebula. Results: The energy gain, resolution, and effective areas are calibrated every month. The corresponding calibration results are duly updated in CALDB, which can be downloaded and used for the analysis of Insight-HXMT data. Simultaneous observations with NuSTAR and NICER can also be used to verify our derived results. Conclusion: LE is a well calibrated X-ray telescope working in 1-10 keV band. The uncertainty of LE gain is less than 20 eV in 2-9 keV band and the uncertainty of LE resolution is less than 15eV. The systematic errors of LE, compared to the model of the Crab Nebula, are lower than 1.5% in 1-10 keV.

  • In-orbit performance of LE onboard Insight-HXMT in the first 5 years

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: Purpose: The Low-Energy X-ray telescope (LE) is a main instrument of the Insight-HXMT mission and consists of 96 Swept Charge Devices (SCD) covering the 1-10 keV energy band. The energy gain and resolution are continuously calibrated by analysing Cassiopeia A (Cas A) and blank sky data, while the effective areas are also calibrated with the observations of the Crab Nebula. In this paper, we present the evolution of the in-orbit performances of LE in the first 5 years since launch. Methods: The Insight-HXMT Data Analysis Software package (HXMTDAS) is utilized to extract the spectra of Cas A, blank sky, and Crab Nebula using different Good Time Interval (GTI) selections. We fit a model with a power-law continuum and several Gaussian lines to different ranges of Cas A and blank sky spectra to get peak energies of their lines through xspec. After updating the energy gain calibration in CALibration DataBase (CALDB), we rerun the Cas A data to obtain the energy resolution. An empirical function is used to modify the simulated effective areas so that the background-subtracted spectrum of the Crab Nebula can best match the standard model of the Crab Nebula. Results: The energy gain, resolution, and effective areas are calibrated every month. The corresponding calibration results are duly updated in CALDB, which can be downloaded and used for the analysis of Insight-HXMT data. Simultaneous observations with NuSTAR and NICER can also be used to verify our derived results. Conclusion: LE is a well calibrated X-ray telescope working in 1-10 keV band. The uncertainty of LE gain is less than 20 eV in 2-9 keV band and the uncertainty of LE resolution is less than 15eV. The systematic errors of LE, compared to the model of the Crab Nebula, are lower than 1.5% in 1-10 keV.

  • Neutral Atmospheric Density Measurement Using Insight-HXMT Data by Earth Occultation Technique

    分类: 天文学 >> 天文学 提交时间: 2023-02-19

    摘要: The Earth occultation technique has broad applications in both astronomy and atmospheric density measurements. We construct the background model during the occultation of the Crab Nebula observed by the Insight-Hard X-ray Modulation Telescope (Insight-HXMT) at energies between 6 keV and 100 keV. We propose a Bayesian atmospheric density retrieval method based on the Earth occultation technique, combining Poisson and Gaussian statistics. By modeling the atmospheric attenuation of X-ray photons during the occultation, we simultaneously retrieved the neutral densities of the atmosphere at different altitude ranges. Our method considers the correlation of densities between neighboring atmospheric layers and reduces the potential systematic bias to which previous work may be subject. Previous analyses based on light curve fitting or spectral fitting also lost some spectral or temporal information of the data. In contrast to previous work, the occultation data observed by the three telescopes onboard Insight-HXMT is fully used in our analysis, further reducing the statistical error in density retrieval. We apply our method to cross-check the (semi-)empirical atmospheric models, using 115 sets of occultation data of the Crab Nebula observed by Insight-HXMT. We find that the retrieved neutral density is ~10%, ~20%, and ~25% less than the values of the widely used atmospheric model NRLMSISE-00, in the altitude range of 55--80 km, 80--90 km, and 90--100 km, respectively. We also show that the newly released atmospheric model NRLMSIS 2.0 is generally consistent with our density measurements.

  • Insight-HXMT observations of the first binary neutron star merger GW170817

    分类: 物理学 >> 普通物理:统计和量子力学,量子信息等 提交时间: 2017-11-10

    摘要: Finding the electromagnetic (EM) counterpart of binary compact star merger, especially the binary neutron star (BNS) merger, is critically important for gravitational wave (GW) astronomy, osmology and fundamental physics. On Aug. 17, 2017, Advanced LIGO and Fermi/GBM independently triggered the first BNS merger, GW170817, and its high energy EM counterpart, GRB 170817A, respectively, resulting in a global observation campaign covering gamma-ray, X-ray, UV, optical, IR, radio as well as neutrinos. The High Energy X-ray telescope (HE) onboard Insight-HXMT (Hard X-ray Modulation Telescope) is the unique high-energy gamma-ray telescope that monitored the entire GW localization area and especially the optical counterpart (SSS17a/AT2017gfo) with very large collection area (~1000 cm2) and microsecond time resolution in 0.2-5 MeV. In addition, Insight-HXMT quickly implemented a Target of Opportunity (ToO) observation to scan the GW localization area for potential X-ray emission from the GW source. Although Insight-HXMT did not detect any significant high energy (0.2-5 MeV) radiation from GW170817, its observation helped to confirm the nexpected weak and soft nature of GRB 170817A. Meanwhile, Insight-HXMT/HE provides one of the most stringent constraints (~10-7 to 10-6 erg/cm2/s) for both GRB170817A and any other possible precursor or extended emissions in 0.2-5 MeV, which help us to better understand the properties of EM radiation from this BNS merger. Therefore the observation of Insight-HXMT constitutes an important chapter in the full context of multi-wavelength and multi-messenger observation of this historical GW event.

  • Hydrological responses of land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops in the Southern High Plains of Texas, USA

    分类: 生物学 >> 植物学 >> 植物生态学和植物地理学 提交时间: 2016-05-04

    摘要: The Southern High Plains (SHP) region of Texas in the United States, where cotton is grown in a vast acreage, has the potential to grow cellulosic bioenergy crops such as perennial grasses and biomass sorghum (Sorghum bicolor). Evaluation of hydrological responses and biofuel production potential of hypothetical land use change from cotton (Gossypium hirsutum L.) to cellulosic bioenergy crops enables better understanding of the associated key agroecosystem processes and provides for the feasibility assessment of the targeted land use change in the SHP. The Soil and Water Assessment Tool (SWAT) was used to assess the impacts of replacing cotton with perennial Alamo switchgrass (Panicum virgatum L.), Miscanthusgiganteus (Miscanthus sinensis Anderss. [Poaceae]), big bluestem (Andropogon gerardii) and annual biomass sorghum on water balances, water use efficiency and biofuel production potential in the Double Mountain Fork Brazos watershed. Under perennial grass scenarios, the average (19942009) annual surface runoff from the entire watershed decreased by 68% relative to the baseline cotton scenario. In contrast, surface runoff increased by about 5% under the biomass sorghum scenario. Perennial grass land use change scenarios suggested an increase in average annual percolation within a range of 322% and maintenance of a higher soil water content during August to April compared to the baseline cotton scenario. About 19.1, 11.1, 3.2 and 8.8 Mgha1 of biomass could potentially be produced if cotton area in the watershed would hypothetically be replaced by Miscanthus, switchgrass, big bluestem and biomass sorghum, respectively. Finally, Miscanthus and switchgrass were found to be ideal bioenergy crops for the dryland and irrigated systems, respectively, in the study watershed due to their higher water use efficiency, better water conservation effects, greater biomass and biofuel production potential, and minimum crop management requirements.