Submitted Date
Subjects
Authors
Institution
Your conditions: 2019-10
  • Warmth or Competence? The Influence of Advertising Appeal and Self-Construal on Consumer-Brand Identification and Purchase Intention

    Subjects: Psychology >> Management Psychology submitted time 2019-10-31

    Abstract: This paper examines the influence of self-construal on the effectiveness of warm/competent advertising appeals on consumer-brand identification and purchase intention, its underlying mechanism and boundary conditions. Specifically, we propose that a warm (competent) advertising appeal should enhance consumer-brand identification and purchase intention among interdependent (independent) consumers through increased pleasure. In addition, this interaction effect between advertising appeal and self-construal should be mitigated when firm type (modern vs. traditional) is made salient. This is because for modern firms all consumers should prefer a competent advertising appeal, whereas for traditional firms all consumers should prefer a warm advertising appeal, regardless of their self-construal. Three experiments provide empirical support for these predictions, and rule out several rival explanations (including fluency, arousal and involvement). Study 1 uses a 2 (advertising appeal: warmth/competence) x 2 (self-construal: independent/dependent) between-subject design. A fictitious shampoo brand “Pantam” is selected as the focal stimulus, and the experimental materials are in the form of a print advertisement. In order to minimize the confounds of experimental results by advertising design, both warm and competent ads adopt the same layout and text length. We recruit 116 participants, manipulate the advertising appeal by designing different patterns, backgrounds and ad copies, and measure participants’ self-construal using an existing scale. We confirm the proposed interaction between advertising appeal and self-construal on brand identification. While the results of Study 1 are supportive of our prediction by using a utilitarian product, in a follow-up study we replicate these results using a hedonic product (i.e., chocolate), demonstrating the robustness of our results for different product types. Study 2 uses a similar between-subject design, using a toothpaste with a fictitious “MysPlant” brand name as the focal stimulus. In order to eliminate the possible confounds in Study 1, a new advertising copy is created. We recruit 149 participants, and manipulate advertising appeal and self-construal. Consistent with our prediction, we confirm the interaction between self-construal and advertising appeal on brand identification and purchase intention. We additionally support the proposed mechanism underlying the interaction effect that is due to an enhanced sense of pleasure, and rule out fluency, arousal, and involvement as possible rival explanations in this and a follow-up study. Study 3 uses a 2 (advertisement appeal: warmth/competence) x 2 (self-construal: independent/dependent) x 2 (firm type: traditional/modern) between-subject design to further test the moderating effect of firm type. Advertising appeal and self-construal are manipulated in similar fashions as in Study 2. The focal stimuli are also similar to those in Study 2. To minimize confounds, we manipulate firm type and verify our manipulation in a pretest. We recruit 278 participants for this study. The results provide support to the moderating effect of firm type and re-confirm the mediation effect of enhanced sense of pleasure. Specifically, we find that for a modern firm all consumers prefer a competent advertising appeal, regardless of their self-construal. In contrast, for a traditional firm whereas interdependent consumers prefer a warm advertising appeal, independent consumers’ preference for a competent advertising appeal is mitigated and they are indifferent between warm and competent advertising appeals. In addition, these effects are mediated by the sense of pleasure. Combined, the results from the three experiments (and the replications of Studies 1 and 2) provide strong empirical evidence for the interaction effect between self-construal and advertising appeal on consumer-brand-identification and purchase intention, the moderating effect of the salience of firm type on this interaction effect, and the underlying mechanism due to the sense of pleasure. "

  • 道德概念的空间形象性:语言因素和具身因素的共同作用

    Subjects: Psychology >> Cognitive Psychology submitted time 2019-10-29

    Abstract: Spatial iconicity is described as the perceptual characteristic of a concrete concept. This idea demonstrates that word pairs are processed faster when their positions match certain references in the physical world (e.g. ‘heaven’ is presented above ‘ground’). Embodied cognition theory explains that spatial iconicity involves processing concrete words to activate their embodied symbols automatically (e.g. spatial and colour symbols). This process then simulates the perceptual characteristics of the words’ physical reference. Symbolic theory proposes that spatial iconicity can also be interpreted by linguistic factors (e.g. word order frequency). Word order frequency is higher in the iconic order than in the reverse-iconic order, which facilitates the processing of word pairs. Symbol interdependency hypothesis integrates the two explanations above, claiming that the embodied and linguistic symbols are involved in shaping spatial iconicity. Furthermore, the respective contributions of these symbols depend on the type of stimuli or task. Despite these claims, the mechanism of spatial iconicity remains controversial. Moreover, whether abstract concepts have a similar spatial iconic effect is still unknown. In Experiment 1, a semantic relationship judgment task was conducted to investigate the effect of embodied symbols on the processing of moral word pairs. Twenty-six participants were chosen randomly to discriminate the antonymous relationship of the moral word pairs in an iconic (e.g. moral-up & immoral-down) or reverse-iconic (e.g. moral-down & immoral-up) arrangement. In Experiment 2, a spatial iconicity judgment task was conducted to investigate the effect of linguistic symbols on the processing of moral word pairs. Twenty-seven participants were chosen to distinguish the iconicity of the moral word pairs, which may belong to an antonym or not. The EEG signals and the reaction times during both experiments were recorded. The results showed that when Chinese moral antonyms were arranged against their spatial iconicity (e.g. moral-down & immoral-up), the processing of the antonymous relationship induced a larger N400 than the arrangement that was coherent with the spatial iconicity (e.g. moral-up & immoral-down). Furthermore, the judgment of the antonymous relationship was slower for the antonym pairs in a reverse-iconic arrangement than in an iconic arrangement. The results also showed that the Chinese word pairs, which did not have antonyms (e.g. trust - evil), induced a larger N200 and N700 than the antonym pairs (e.g. incorrupt - corrupt) did. Moreover, the reaction time of the iconicity judgment to the word pairs that did not belong to antonyms was slower than that of the antonym pairs. The results of the two experiments revealed that regardless of the task, the embodied and linguistic symbols contributed to spatial iconicity. Nevertheless, the mechanisms of the two symbols were different. This study explored the spatial iconicity of abstract moral concepts, the roles of the embodied symbols and the linguistic symbols in shaping spatial iconicity. The results showed that (1) abstract moral concepts had a similar spatial iconicity to concrete concepts, which could be achieved by mapping the metaphors. (2) Furthermore, embodied and linguistic symbols were involved in shaping spatial iconicity regardless of the task. (3) When processing moral words, the linguistic symbols were activated to influence the process. The embodied symbols would only be activated and take effect in the middle of the process.

  • Masked Sentence Model based on BERT for Move Recognition in Medical Scientific Abstracts

    Subjects: Computer Science >> Natural Language Understanding and Machine Translation Subjects: Library Science,Information Science >> Automation method and equipment in intelligence process submitted time 2019-10-29

    Abstract: Purpose: Move recognition in scientific abstracts is an NLP task of classifying sentences of the abstracts into different types of language unit. To improve the performance of move recognition in scientific abstracts, a novel model of move recognition is proposed that outperforms BERT-Base method. Design: Prevalent models based on BERT for sentence classification often classify sentences without considering the context of the sentences. In this paper, inspired by the BERT's Masked Language Model (MLM), we propose a novel model called Masked Sentence Model that integrates the content and contextual information of the sentences in move recognition. Experiments are conducted on the benchmark dataset PubMed 20K RCT in three steps. And then compare our model with HSLN-RNN, BERT-Base and SciBERT using the same dataset. Findings: Compared with BERT-Base and SciBERT model, the F1 score of our model outperforms them by 4.96% and 4.34% respectively, which shows the feasibility and effectiveness of the novel model and the result of our model comes closest to the state-of-the-art results of HSLN-RNN at present. Research Limitations: The sequential features of move labels are not considered, which might be one of the reasons why HSLN-RNN has better performance. And our model is restricted to dealing with bio-medical English literature because we use dataset from PubMed which is a typical bio-medical database to fine-tune our model. Practical implications: The proposed model is better and simpler in identifying move structure in scientific abstracts, and is worthy for text classification experiments to capture contextual features of sentences. Originality: The study proposes a Masked Sentence Model based on BERT which takes account of the contextual features of the sentences in abstracts in a new way. And the performance of this classification model is significantly improved by rebuilding the input layer without changing the structure of neural networks.

  • 冲突对绩效的影响:个体、团队宜人性的调节作用

    Subjects: Psychology >> Management Psychology submitted time 2019-10-28

    Abstract: "

  • Monitoring the impact of climate change and human activities on grassland vegetation dynamics in the northeastern Qinghai-Tibet Plateau of China during 2000–2015

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Climate change and human activities can influence vegetation net primary productivity (NPP), a key component of natural ecosystems. The Qinghai-Tibet Plateau of China, in spite of its significant natural and cultural values, is one of the most susceptible regions to climate change and human disturbances in the world. To assess the impact of climate change and human activities on vegetation dynamics in the grassland ecosystems of the northeastern Qinghai-Tibet Plateau, we applied a time-series trend analysis to normalized difference vegetation index (NDVI) datasets from 2000 to 2015 and compared these spatiotemporal variations with trends in climatic variables over the same time period. The constrained ordination approach (redundancy analysis) was used to determine which climatic variables or human-related factors mostly influenced the variation of NDVI. Furthermore, in order to determine whether current conservation measures and programs are effective in ecological protection and reconstruction, we divided the northeastern Qinghai-Tibet Plateau into two parts: the Three-River Headwater conservation area (TRH zone) in the south and the non-conservation area (NTRH zone) in the north. The results indicated an overall (73.32%) increasing trend of vegetation NPP in grasslands throughout the study area. During the period 2000–2015, NDVI in the TRH and NTRH zones increased at the rates of 0.0015/a and 0.0020/a, respectively. Specifically, precipitation accounted for 9.2% of the total variation in NDVI, while temperature accounted for 13.4%. In addition, variation in vegetation NPP of grasslands responded not only to long- and short-term changes in climate, as conceptualized in non-equilibrium theory, but also to the impact of human activities and their associated perturbations. The redundancy analysis successfully separated the relative contributions of climate change and human activities, of which village population and agricultural gross domestic product were the two most important contributors to the NDVI changes, explaining 17.8% and 17.1% of the total variation of NDVI (with the total contribution >30.0%), respectively. The total contribution percentages of climate change and human activities to the NDVI variation were 27.5% and 34.9%, respectively, in the northeastern Qinghai-Tibet Plateau. Finally, our study shows that the grassland restoration in the study area was enhanced by protection measures and programs in the TRH zone, which explained 7.6% of the total variation in NDVI.

  • Physiological and biochemical appraisal for mulching and partial rhizosphere drying of cotton

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Water is the main factor for the healthy life of plant. One of the main negative effects of climate change is the increasing scarcity of water that is lethal for plant. Globally, for water deficit regions (arid and semi-arid), drought is the main factor responsible for low production of agriculture, especially for cotton. Great efforts have been and are being made to find alternatives to water saving practices. This study aimed to examine the effects of partial rhizosphere drying (PRD, half of the root system irrigated at one event, and the other half irrigated in the next event, and so on) with and/or without various mulching treatments on physiological and biochemical traits of cotton. To explore this objective, we laid out experiments in completely randomized design with factorial arrangement in the Islamia University of Bahawalpur, Pakistan in 2016. Two factors included were four mulching treatments (M0, no mulching; M1, black plastic mulching; M2, wheat straw mulching; and M3, cotton sticks mulching) and two irrigation levels (I0, control (full irrigation); and I1, PRD). Fisher's analysis of variance among means of treatments was compared using least significant difference test at 5% probability level. Results revealed that the maximum plant height, leaf area, leaf gas exchange (photosynthetic rate and stomata conductance), chlorophyll, proline and total sugar contents, and enzyme activities were higher under M2 than under other three mulching treatments. As for irrigation levels, higher values of plant height, photosynthesis and water related parameters (leaf water potential, leaf osmotic potential, leaf turgor potential, etc.) were recorded. Contents of total sugar and proline and activities of antioxidant enzymes were significantly higher in PRD-treated plants than in control plants. It was concluded that combined application of PRD and mulching was more effective than the rest of the treatments used in the experiment. Similar study can be conducted in the field by applying irrigation water in alternate rows in semi-arid regions.

  • Effects of water stress and NaCl stress on different life cycle stages of the cold desert annual Lachnoloma lehmannii in China

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:For a plant species to complete its life cycle in arid and saline environments, each stage of the life cycle must be tolerant to the harsh environmental conditions. The aim of the study was to determine the effects of water stress (water potentials of –0.05, –0.16, –0.33, –0.56, –0.85 and –1.21 MPa) and NaCl stress (50, 100, 200, 300, 400, 500 and 600 mmol/L NaCl) on seed germination percentage, seedling survival and growth, juvenile growth and plant reproduction of Lachnoloma lehmannii Bunge (Brassicaceae), an cold desert annual that grows in the Junggar Basin of Xinjiang, China in 2010. Results indicated that low water stress (–0.05 and –0.16 MPa) had no significant effect on seed germination percentage. With a decrease in water potential, germination percentage decreased, and no seeds germinated at –0.85 and –1.21 MPa water stresses. Germination percentage of seeds was significantly affected by NaCl stress, and higher germination percentages were observed under non-saline than saline conditions. An increase in NaCl concentrations progressively inhibited seed germination percentage, and no seeds germinated at ≥400 mmol/L NaCl concentration. Non-germinated seeds were transferred from both PEG (polyethylene glycol-6000) and NaCl solutions to distilled water for seed germination recovery. The number of surviving seedlings and their heights and root lengths significantly decreased as NaCl stress increased. About 30% of the plants survived and produced fruits/seeds at 200 mmol/L NaCl concentration. Thus, seed germination, seedling establishment and reproductive stage in the life cycle of L. lehmannii are water- and salt-tolerant, with seedlings being the least tolerant. These tolerances help explain why this species can survive and produce seeds in arid and saline habitats.

  • Modified non-rectangular hyperbola equation with plant height for photosynthetic light-response curves of Potentilla anserina and Elymus nutans at various growth phases in the Heihe River Basin, Northwest China

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:The non-rectangular hyperbola (NRH) equation is the most popular method that plots the photosynthetic light-response (PLR) curve and helps to identify plant photosynthetic capability. However, the PLR curve can't be plotted well by the NRH equation at different plant growth phases due to the variations of plant development. Recently, plant physiological parameters have been considered into the NRH equation to establish the modified NRH equation, but plant height (H), an important parameter in plant growth phases, is not taken into account. In this study, H was incorporated into the NRH equation to establish the modified NRH equation, which could be used to estimate photosynthetic capability of herbage at different growth phases. To explore photosynthetic capability of herbage, we selected the dominant herbage species Potentilla anserina L. and Elymus nutans Griseb. in the Heihe River Basin, Northwest China as the research materials. Totally, twenty-four PLR curves and H at different growth phases were measured during the growing season in 2016. Results showed that the maximum net photosynthetic rate and the initial slope of PLR curve linearly increased with H. The modified NRH equation, which is established by introducing H and an H-based adjustment factor into the NRH equation, described better the PLR curves of P. anserina and E. nutans than the original ones. The results may provide an effective method to estimate the net primary productivity of grasslands in the study area.

  • Effects of temperature on flowering phenological traits of Populus euphratica Oliv. and Populus pruinosa Schrenk populations, Xinjiang, China

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:The aims of this study were to explore the interspecific differences of Populus euphratica Oliv. and Populus pruinosa Schrenk populations and the intraspecific differences of males and females within the same species in flowering phenological traits, and the effects of temperatures on flowering phenological traits in different growth years (2001–2003 and 2013–2015). The results showed that P. euphratica population flowered earlier than P. pruinosa population. Moreover, flowering phenological period of population, number of days of flowering phenological period per population, number of days of flowering phenological period per plant and average number of days of flowering period per plant of P. euphratica population were less than those of P. pruinosa population. The differences between male and female within the same species indicated that the flowering periods of males P. euphratica and P. pruinosa populations were earlier than those of female plants. For both species, flowering phenological traits were significantly and negatively correlated with the average temperatures in previous ten days, previous one month and previous three months of flowering. Both species are sensitive to temperature changes and adjust to the changes by advancing the start of flowering and prolonging the duration of flowering.

  • Effects of biochar on water movement characteristics in sandy soil under drip irrigation

    Subjects: Physics >> General Physics: Statistical and Quantum Mechanics, Quantum Information, etc. submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Biochar addition can improve the physical and hydraulic characteristics of sandy soil. This study investigated the effects of biochar on water holding capacity and water movement in sandy soil under drip irrigation. By indoor simulation experiments, the effects of biochar application at five levels (0%, 1%, 2%, 4% and 6%) on the soil water retention curve, infiltration characteristics of drip irrigation and water distribution were tested and analyzed. The results showed that biochar addition rate was positively correlated with water holding capacity of sandy soil and soil available water. Within the same infiltration time, with an increasing amount of added biochar, the diffusion distance of the horizontal wetting front (HWF) tended to decrease, while the infiltration distance of vertical wetting front (VWF) initially declined and then rose. The features of wetted bodies changed from "broad-shallow" to "narrow-deep" type. The relationship between the transport distances of HWF and VWF and the infiltration time was described by a power function. At the same distance from the point source, the larger the amount of added biochar, the higher the soil water content. Biochar had a great influence on the water content of the layer with biochar (0–200 mm) and had some effects at 200–250 mm without biochar; but it had less influence on the soil water content deeper than 250 mm. For the application rate of biochar of 4%, most water was retained within 0–250 mm soil layer. However, when biochar application amount was high (6%), it would be helpful for water infiltration. During the improvement of sandy soil, biochar application rate of 4% in the plow layer had the best effect.

  • Ecological biomass allocation strategies in plant species with different life forms in a cold desert, China

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Biomass allocation patterns among plant species are related to their adaptive ecological strategies. Ephemeral, ephemeroid and annual plant life forms represent three typical growth strategies of plants that grow in autumn and early spring in the cold deserts of China. These plants play an important role in reducing wind velocity in the desert areas. However, despite numerous studies, the strategies of biomass allocation among plant species with these three life forms remain contentious. In this study, we conducted a preliminary quadrat study during 2014–2016 in the southern part of the Gurbantunggut Desert, China, to investigate the allocation patterns of above-ground biomass (AGB) and below-ground biomass (BGB) at the individual level in 17 ephemeral, 3 ephemeroid and 4 annual plant species. Since ephemeral plants can germinate in autumn, we also compared biomass allocation patterns between plants that germinated in autumn 2015 and spring 2016 for 4 common ephemeral species. The healthy mature individual plants of each species were sampled and the AGB, BGB, total biomass (TB), leaf mass ratio (LMR) and root/shoot ratio (R/S) were calculated for 201 sample quadrats in the study area. We also studied the relationships between AGB and BGB of plants with the three different life forms (ephemeral, ephemeroid and annual). The mean AGB values of ephemeral, ephemeroid and annual plants were 0.806, 3.759 and 1.546 g/plant, respectively, and the mean BGB values were 0.106, 4.996 and 0.166 g/plant, respectively. The mean R/S value was significantly higher in ephemeroid plants (1.675) than in ephemeral (0.154) and annual (0.147) plants. The mean LMR was the highest in annual plants, followed by ephemeroid plants and ephemeral plants, reflecting the fact that annual plants allocate more biomass to leaves, associated with their longer life span. Biomass of ephemeral plants that germinated in autumn was significantly higher than those of corresponding plants that germinated in spring in terms of AGB, BGB and TB. However, the R/S value was similar in plants that germinated in autumn and spring. The slope of regression relationship between AGB and BGB differed significantly among the three plant life forms. These results support different biomass allocation hypotheses. Specifically, at the individual level, the AGB and BGB partitioning supports the allometric hypothesis for ephemeroid and annual plants and the isometric hypothesis for ephemeral plants.

  • Impacts of water resource planning on regional water consumption pattern: A case study in Dunhuang Oasis, China

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Water resources are critical for the existence and development of oases in endorheic basins. Thus, to enable sustainable development, it is fundamentally important to understand how to allocate and use these resources in a reasonable way. We therefore simulated and analyzed changes in water consumption pattern within the Dunhuang Oasis of China under three scenarios using a system dynamic model that corresponds to different water consumption pattern. This was done to assess the impacts of regional water resource planning (comprehensive planning of the rational use of water resource and protection of ecosystem services in the Dunhuang Basin) on water consumption pattern within the Dunhuang Oasis. The first of these, Scenario 1, is a baseline in which the status quo is maintained, while Scenario 2 incorporates the comprehensive effects of agricultural water-saving irrigation measures with an inter-basin water diversion project, and Scenario 3 focuses on ecological rehabilitation. In the baseline Scenario 1, the total water consumption within the Dunhuang Oasis increased progressively while agricultural water consumption remained extremely high and threatened overall ecological security. In contrast, Scenario 2 would decrease agricultural water consumption by almost 5.30×107 m3 following the implementation of water-saving practices. The additional water allocated from an inter-basin water diversion project would play an important role in alleviating ecological strain on the oasis. Finally, in Scenario 3, the total irrigated land must be decreased to 20.6×103 hm2 by 2025 assuming that water supply for ecosystem restoration would be at least 50% of the total consumption. Although water resource planning plays a very important role in alleviating the ecological water crisis within the oasis, it is necessary to consider the suitable scale of oasis with regard to current water consumption pattern.

  • Wind regime for long-ridge yardangs in the Qaidam Basin, Northwest China

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Yardangs are typical aeolian erosion landforms, which are attracting more and more attention of geomorphologists and geologists for their various morphology and enigmatic formation mechanisms. In order to clarify the aeolian environments that influence the development of long-ridge yardangs in the northwestern Qaidam Basin of China, the present research investigated the winds by installing wind observation tower in the field. We found that the sand-driving winds mainly blow from the north-northwest, northwest and north, and occur the most frequent in summer, because the high temperature increases atmospheric instability and leads to downward momentum transfer and active local convection during these months. The annual drift potential and the ratio of resultant drift potential indicate that the study area pertains to a high-energy wind environment and a narrow unimodal wind regime. The wind energy decreases from northwest to southeast in the Qaidam Basin, with the northerly winds in the northwestern basin changing to more westerly in the southeastern basin. The strong and unidirectional wind regime for the long-ridge yardangs in the northwestern Qaidam Basin results from the combined effects of topographic obstacles such as the Altun Mountains and of the interaction between the air stream and the yardang bodies. Present study suggests that yardang evolution needs such strong and unidirectional winds in high- or intermediate-energy wind environments. This differs from sandy deserts or sandy lands, which usually develop at low- or intermediate-energy wind environments. Present study clarifies the wind regime corresponding to the long-ridge yardangs' development, and lays firm foundation to put forward the formation mechanisms for yardangs in the Qaidam Basin.

  • Spatio-temporal variation of soil moisture in a fixed dune at the southern edge of the Gurbantunggut Desert in Xinjiang, China

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Soil moisture is critical for vegetation growth in deserts. However, detailed data regarding the soil moisture distribution in space and time in the Gurbantunggut Desert of China have not yet been reported. In this study, we conducted a series of in situ observation experiments in a fixed sand dune at the southern edge of the Gurbantunggut Desert from February 2014 to October 2016, to explore the spatio-temporal variation of soil moisture content, investigate the impact of Haloxylon ammodendron (C. A. Mey.) Bungeon soil moisture content in its root zone, and examine the factors influencing the soil moisture spatial pattern. One-way analysis of variance, least significant difference tests and correlation analysis were used to analyze the data. The results revealed that the soil moisture content exhibited annual periodicity and the temporal variation of soil moisture content throughout a year could be divided into three periods, namely, a moisture-gaining period, a moisture-losing period and a moisture-stable period. According to the temporal and spatial variability, the 0–400 cm soil profile could be divided into two layers: an active layer with moderate variability and a stable layer with weak variability. The temporal variability was larger than the spatial variability in the active layer, and the mean profile soil moisture content at different slope positions displayed the trend of decreasing with increasing relative height and mainly followed the order of interdune area>west and east slopes>slope top. The mean profile soil moisture content in the root zone of dead H. ammodendron individuals was significantly higher than that in the root zones of adult and young individuals, while the soil moisture content in the root zone of adult individuals was slightly higher than that in the root zone of young individuals with no significant difference. The spatial pattern of soil moisture was attributable to the combined effects of snowfall, vegetation and soil texture, whereas the effects of rainfall and evaporation were not significant. The findings may offer a foundation for the management of sandy soil moisture and vegetation restoration in arid areas.

  • Influence of salinity and moisture on the threshold shear velocity of saline sand in the Qarhan Desert, Qaidam Basin of China: A wind tunnel experiment

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Determination of the threshold shear velocity is essential for predicting sand transport, dust release and desertification. In this study, a wind tunnel experiment was conducted to evaluate the influence of salinity and moisture on the threshold shear velocity of saline sand. Saline sand samples (mean particle size of 164.50–186.08 μm and the total silt, clay and salt content of 0.80%–8.25%) were collected from three saline sand dunes (one barchan dune and two linear dunes) in the Qarhan Desert, Qaidam Basin of China. Original saline sand samples were placed in two experimental trays for wet and dry processing to simulate deliquescence and desiccation, respectively. Surface moisture content ranging from 0.30% to 1.90% was generated by the steam method so that the saline sand can absorb water in a saturated water vapor environment. The motion of sand particles was determined by the observers with a solid laser. The laser sheet (0.80 cm thick), which was emitted by the solid laser, horizontally covered the sand surface and was bound to the sand. Results show that the cohesion of saline sand results from a combination of salt and water. The threshold shear velocity increases exponentially with the increase in crust thickness for the linear sand dunes. There is a positive linear correlation between the original moisture content and relative threshold shear velocity. The threshold shear velocity of dewatered sand is greater than that of wet sand with the same original moisture content. Our results will provide valuable information about the sand transport of highly saline soil in the desert.

  • Mapping desertification potential using life cycle assessment method: a case study in Lorestan Province, Iran

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:In recent year, desertification has become one of the most important environmental hazards all over the world, especially in developing countries such as Iran. Understanding the factors impacting on desertification and identifying the regions with high desertification potential are essential to control this phenomenon (i.e., desertification). The life cycle assessment (LCA) method is essential in assessing the desertification of ecosystems, especially for susceptible ecosystems with high degradation risks. The aim of the present study was to evaluate the desertification potential of Lorestan Province, Iran, based on the LCA method. We selected aridity, fire and dust as three indicators of desertification and collected data from 2000 to 2015. We divided the study area into 6 types of ecoregions according to the climate types (arid, semi-arid and dry sub-humid) and dominant species (Quercus brantii and Astragalus adscendens), and calculated the characteristic factor (CF) of each indicator (aridity, fire and dust) by combining the indicator layers and ecoregion layer of the study area. In a given ecoregion, the sum of CF values of aridity, dust and fire indicators represents the life cycle inventory (LCI) desertification value (the higher the LCI value, the greater the desertification potential). Then, we obtained the desertification potential map by combining and overlapping the ecoregions and the normalized indicators based on the LCA method. Aridity and fire exhibit significant impacts on desertification in the study area compared with dust. In the study area, semi-arid ecoregion with Quercus brantii as the dominant species is the largest ecoregion, while arid ecoregion with Quercus brantii as the dominant species is the smallest ecoregion. Arid ecoregion with Astragalus adscendens as the dominant species (LCI desertification value of 1.99) and dry sub-humid ecoregion with Quercus brantii as the dominant species (LCI desertification value of 0.79) show the highest and lowest desertification potentials, respectively. Furthermore, arid ecoregion with Quercus brantii as the dominant species also has a higher LCI desertification value (1.89), showing a high desertification potential. These results suggest the necessity of proper management and appropriate utilization in these ecoregions. In general, assessing desertification potential using the LCA method on a local and regional scale can possibly provide a new methodology for identifying and protecting areas with high degradation risks.

  • Reinvestigation of the scaling law of the windblown sand launch velocity with a wind tunnel experiment

    Subjects: Environmental Sciences, Resource Sciences >> Basic Disciplines of Environmental Science and Technology submitted time 2019-10-26 Cooperative journals: 《干旱区科学》

    Abstract:Windblown sand transport is a leading factor in the geophysical evolution of arid and semi-arid regions. The evolution speed is usually indicated by the sand transport rate that is a function of launch velocity of sand particle, which has been investigated by the experimental measurement and numerical simulation. However, the obtained results in literatures are inconsistent. Some researchers have discovered a relation between average launch velocity and wind shear velocity, while some other researchers have suggested that average launch velocity is independent of wind shear velocity. The inconsistence of launch velocity leads to a controversy in the scaling law of the sand transport rate in the windblown case. On the contrary, in subaqueous case, the scaling law of the sand transport rate has been widely accepted as a cubic function of fluid shear velocity. In order to explain the debates surrounding the windblown case and the difference between windblown and subaquatic cases, this study reinvestigates the scaling law of the vertical launch velocity of windblown transported sand particles by using a dimensional analysis in consideration of the compatibility of the characteristic time of sand particle motion and that of air flow. Then a wind tunnel experiment is conducted to confirm the revisited scaling law, where the sand particle motion pictures are recorded by a high-speed camera and then the launch velocity is solved by the particle tracking velocimetry. By incorporating the results of dimensional analysis and wind tunnel experiment, it can be concluded that, the ratio of saltons number to reptons number determines the scaling law of sand particle launch velocity and that of sand transport rate, and using this ratio is able to explain the discrepancies among the classical models of steady sand transport. Moreover, the resulting scaling law can explain the sand sieving phenomenon: a greater fraction of large grains is observed as the distance to the wind tunnel entrance becomes larger.

  • The Temporal Process of Visual Word Recognition of Chinese Compound: Behavioral and ERP Evidences Based on Homographic Morphemes

    Subjects: Psychology >> Cognitive Psychology submitted time 2019-10-23

    Abstract: It is notoriously difficult to dissociate the processes of orthography, phonology, and semantics in visual word recognition. Using homographic morphemes in Chinese homographs, the present study attempts to further examine the time course of orthographic, phonological and semantic activation in a masked priming paradigm. Two-character compounds of Chinese were divided into such four conditions: Heterophonic-homography (“+O-P-S”, e.g., “作坊” / zuo1 fang / workshop), Homophonic-homography (“+O+P-S”, e.g., “作息” / zuo4 xi1 / work-and-rest), Identity (“+O+P+S”, e.g., “作诗” zuo4 shi1 / poetry-composing) and the control (“-O-P-S”, e.g., “账本” / zhang4 ben3 / account-book). Each of them served as a prime with both forward and backward masks and an SOA of 47ms and was followed by the same target compound (e.g., “作画 / zuo4 hua4 / painting”) with its initial character being the same as those of the first three conditions. Two experiments were conducted, adopting a lexical decision task for Experiment 1 (behavioral) and a semantic categorization task for Experiment 2 (ERP) respectively. It was found that (1) the Heterophonic-homography, Homophonic-homography, and Identity conditions all induced morphological priming effects relative to the control condition; (2) in P200 (120-220 ms) and Late N400 (430-540 ms), the amplitude and waveform of Homophonic-homography was much more similar to that of the control condition, but was significantly different from those of the Heterophonic-homography and Identity conditions; (3) in Early-N400 (280-400 ms), the amplitude and waveform of Homophonic-homography was closer to that of the Identity condition, but was significantly different from that of Heterophonic-homography. The result indicates that the early stage of visual word recognition might be related to morpho-orthographic processing based on lexeme, in which orthographic similarity and phonological information may play an important role; however, the late stage of visual word recognition might be concerned with morpho-semantic processing based on lemma, which may involve meaning selection and lemma competition. The above findings tend to support Parallel Distributed Processing Model as advocated by McClelland and his associates.

  • Sparse Representation Based Efficient Radiation Symmetry Analysis Method for Cylindrical Model of Inertial Confinement Fusion

    Subjects: Mathematics >> Modeling and Simulation submitted time 2019-10-23

    Abstract: Radiation symmetry evaluation is critical to the laser driven Inertial Confinement Fusion (ICF), which is usually done by solving a view-factor equation model. The model is nonlinear, and the number of equations can be very large when the size of discrete mesh element is very small to achieve a prescribed accuracy, which may lead to an intensive equation solving process. In this paper, an efficient radiation symmetry analysis approach based on sparse representation is presented, in which, 1) the Spherical harmonics, annular Zernike polynomials and Legendre-Fourier polynomials are employed to sparsely represent the radiation flux on the capsule and cylindrical cavity, and the nonlinear energy equilibrium equations are transformed into the equations with sparse coefficients, which means there are many redundant equations, 2) only a few equations are selected to recover such sparse coefficients with Latin hypercube sampling, 3) a Conjugate Gradient Subspace Thresholding Pursuit (CGSTP) algorithm is then given to rapidly obtain such sparse coefficients equation with as few iterations as possible. Finally, the proposed method is validated with two experiment targets for Shenguang II and Shenguang III laser facility in China. The results show that only one tenth of computation time is required to solve one tenth of equations to achieve the radiation flux with comparable accuracy. Further more, the solution is much more efficient as the size of discrete mesh element decreases, in which, only 1.2% computation time is required to obtain the accurate result.

  • Cognitive development of multiple metaphors of power concepts in 3~5 year-old children

    Subjects: Psychology >> Developmental Psychology submitted time 2019-10-22

    Abstract: " Conceptual Metaphor Theory assumes that metaphorical mapping represent abstract concepts in terms of concrete ideas. To investigate the cognitive developmental process of multiple metaphors of power concepts in children aged three to five years old, the present study aims to answer three questions: (1) when children’s multiple metaphors of power concepts first develop; (2) whether children can comprehend power concepts through concrete ideas (size, vertical spatial position, and weight) and whether the developmental process is balanced among these three kinds of metaphors; and (3) whether the development of children’s metaphorical perception of power concepts is consistent with metaphor correspondence theory or polarity coding correspondence. To address the above questions, we conducted three experiments in the present study. A total of 90 preschool children were recruited and divided into three age groups: 3-year-olds, 4-year-olds, and 5-year-olds. Experiment 1 investigated the developmental processing of children’s size metaphor of power concepts, which refers to the perception that a powerful person is large whereas a powerless person is small. The experiment was a 3 (age group: three, four, and five) × 2 (picture type: powerful and powerless) × 2 (size: large and small) mixed design. Participants were requested to place pictures of familiar cartoon figures that exhibited powerful or powerless qualities onto large or small circles. Results revealed that the frequency with which children placed pictures of powerful figures in large circles and those of powerless figures in small circles increased considerably with age. Experiment 2 investigated the developmental processing of children’s vertical spatial metaphor of power concepts, which refers to the perception that a powerful person is spatially up whereas a powerless person is spatially down. The experiment was a 3 (age group: three, four, and five) × 2 (picture type: powerful and powerless) × 2 (spatial position: upper and lower) mixed design. Participants were requested to place pictures of familiar cartoon figures that exhibited powerful or powerless qualities into boxes printed above or below a stick figure. Results revealed that the frequency with which children placed pictures of powerful figures in the upper box and those of powerless figures in the lower box increased considerably with age. Experiment 3 investigated the developmental processing of children’s weight metaphor of power concepts, which refers to the perception that a powerful person is heavy whereas a powerless person is light. The experiment was a 3 (age group: three, four, and five) × 2 (picture type: powerful and powerless) × 2 (weight type: heavy and light) mixed design. Participants were requested to place pictures of familiar cartoon figures that exhibited powerful or powerless qualities into a teeterboard printed with heavy or light sides. Results revealed that the frequency with which children placed pictures of powerful figures in the heavy side and pictures of powerless figures in the light side increased considerably with age. Taken together, results demonstrated that (1) children aged three have not yet developed metaphors of power concepts. The age of four is an important period for the development of metaphors of power concepts, when the ability of comprehending such metaphors developed. Children aged four could understand positive pole metaphors of power concepts, while children aged five enhanced this capability. In addition, children aged 5 could understand the negative metaphors of power concepts, which means that they developed a comprehensive ability to understand multiple metaphors (size, vertical spatial position, and weight) of power concepts; (2) preschool children had a balanced understanding of multiple metaphors of power concepts; (3) the development of metaphors of power concepts in preschool children is in line with metaphor correspondence theory. Moreover, the development of metaphorical representation does not follow a “with or without” pattern but rather a “gradual” developmental model. " "